搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

掺杂硅纳米梁谐振频率的理论模型及分子动力学模拟

马霞 王静

引用本文:
Citation:

掺杂硅纳米梁谐振频率的理论模型及分子动力学模拟

马霞, 王静

Study on resonance frequency of doping silicon nano-beam by theoretical model and molecular dynamics simulation

Ma Xia, Wang Jing
PDF
导出引用
  • 通过理论计算与模拟,研究分析了P元素替代掺杂单晶硅纳米梁的谐振频率.计算模拟了两端固支单晶硅纳米梁的谐振频率随尺寸、掺杂浓度与温度的变化.通过对计算结果与模拟结果的分析得到: 单晶硅纳米梁的谐振频率随着硅纳米梁长度尺寸的增大而减小;硅纳米梁的谐振频率随着掺杂浓度的增大而增大,但变化趋势并不明显;最后考虑了温度效应,发现掺杂硅纳米梁的谐振频率随着温度的增大而减小,但从谐振频率的数值来看,硅梁的谐振频率随温度的变化趋势并不明显,即温度对硅梁谐振频率基本无影响.由此得出结论: 掺杂浓度与温度对硅纳米梁谐振频率的影响很小,影响单晶硅纳米梁谐振频率的主要因素是尺寸大小,掺杂单晶硅纳米梁的谐振频率具有尺寸效应.
    With the rapid development of nanoelectromechanical system technologies, silicon nanostructures have attracted considerable attention for the remarkable mechanical properties. A number of studies have been made on the mechanical properties through theoretical analysis, atomistic or molecular dynamics and experiments. In this paper, the resonance frequency of the doping silicon nano-beam is investigated by a theoretical model based the semi-continuum approach to achieve the goal of accurately capturing the atomistic physics and retaining the efficiency of continuum model. The temperature dependence of the resonance frequency of the nanostructure is important for application design, which is considered by the Keating anharmonic model used to describe the strain energy at finite temperature. The resonance frequencies are also simulated by the molecular dynamics at different temperatures. The studies indicate that the resonance frequency of the P doped silicon nano-beam is influenced by the size, the doping concentration and the temperature. The results show that the resonant frequency decreases with the increase of the length of the beam, and increases with the increase of the doping concentration of the silicon nano-beam. The resonant frequency of silicon nano-beam decreases with the increase of temperature, but the changes of the resonant frequency is not obvious. The doping concentration has a little effect on the resonance frequency of the silicon nano-beam. The conclusion can be drawn that neither the effect of doping concentration nor the effect of temperature on resonant frequency of the silicon nano-beam is obvious, the size is a major factor influencing the resonance frequency of the silicon nano-beam.
      通信作者: 王静, wjxju@163.com
    • 基金项目: 国家自然科学基金(批准号:11064014)资助的课题.
      Corresponding author: Wang Jing, wjxju@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11064014).
    [1]

    Huang X M H, Ekinci K L, Yang Y T, Zorman C A, Mehregany M, Roukes M L 2002 Appl. Phys. Lett. 81 2253

    [2]

    Yang Y T, Callegari C, Feng X L, Ekinci K L, Roukes M L 2006 Nano Lett. 6 583

    [3]

    Yang Y T, Callegari C, Feng X L, Roukes M L 2011 Nano Lett. 11 1753

    [4]

    Bargatin I, Myers E B, Aldridge J S, Marcoux C, Brianceau P, Duraffourg L 2012 Nano Lett. 12 1269

    [5]

    Arkan E F, Sacchetto D, Yildiz I 2011 J. Micromech. Microeng. 21 125018

    [6]

    Koumela A, Hentz S, Mercier D, Ollier E, Feng P X, Purcell S T 2013 Nat. Nanotech. 24 435203

    [7]

    Li X X, Ono T, Wang Y, Esashi M 2003 Appl. Phys. Lett. 83 3081

    [8]

    Sun C T, Zhang H 2003 J. Appl. Phys. 93 1212

    [9]

    Bao F, Yu H, Lu Q, Huang Q 2007 Chin. J. Semi. 28 1979

    [10]

    Lu Q R, Bao F, Yu H, Huang Q A 2008 Chin. J. Sens. Actuat. 21 469 (in Chinese) [陆清茹, 鲍芳, 于虹, 黄庆安 2008 传感技术学报 21 469]

    [11]

    Wang J, Huang Q A, Yu H 2008 Appl. Surf. Sci. 255 2449

    [12]

    L H L, Wang J 2015 Acta Phys. Sin. 64 236103 (in Chinese) [吕焕玲, 王静 2015 64 236103]

    [13]

    Gong B, Chen Q, Wang D 2012 Mater. Lett. 67 165

    [14]

    Cao G B, Chen Y F, Jiao J W, Wang Y L 2007 Mech. Res. Commun. 34 503

    [15]

    Pishkenari H N, Afsharmanesh B, Tajaddodianfar F 2016 Int. J. Eng. Sci. 100 8

    [16]

    L H L, Wang J 2016 J. Xinjiang Univ. 33 421 (in Chinese) [吕焕玲, 王静 2016 新疆大学学报 33 421]

    [17]

    Rcker H, Methfessel M 1995 Phys. Rev. B 52 11059

    [18]

    Wang J 2012 The Sixth Asia-Pacific Conference on Transducers and Micro/Nano Technologies Nanjing, China, July 8-11, 2012 ac12000109

    [19]

    Krivtsov A M, Morozovv N F 2002 Phys. Solid State 44 2260

    [20]

    Xu Y, Zhang L C, Yu T X 1987 Int. J. Mech. Sci. 29 425

    [21]

    Wang J, Huang Q A, Yu H 2008 J. Phys. D: Appl. Phys. 41 165406

    [22]

    Park S H, Kim J S, Park J H, Lee J S, Choi Y K, Kwon O M 2005 Thin Sol. Films 492 285

    [23]

    Li Y N, Zhao J, Guo T 2008 J. Tianjin Univ. 41 7 (in Chinese) [李艳宁, 赵景, 郭彤 2008 天津大学学报 41 7]

    [24]

    Pishkenari H N, Afsharmanesh B, Akbari E 2015 Curr. Appl. Phys. 15 1389

    [25]

    Tang Z, Alueu N R 2006 Phys. Rev. B 74 235441

  • [1]

    Huang X M H, Ekinci K L, Yang Y T, Zorman C A, Mehregany M, Roukes M L 2002 Appl. Phys. Lett. 81 2253

    [2]

    Yang Y T, Callegari C, Feng X L, Ekinci K L, Roukes M L 2006 Nano Lett. 6 583

    [3]

    Yang Y T, Callegari C, Feng X L, Roukes M L 2011 Nano Lett. 11 1753

    [4]

    Bargatin I, Myers E B, Aldridge J S, Marcoux C, Brianceau P, Duraffourg L 2012 Nano Lett. 12 1269

    [5]

    Arkan E F, Sacchetto D, Yildiz I 2011 J. Micromech. Microeng. 21 125018

    [6]

    Koumela A, Hentz S, Mercier D, Ollier E, Feng P X, Purcell S T 2013 Nat. Nanotech. 24 435203

    [7]

    Li X X, Ono T, Wang Y, Esashi M 2003 Appl. Phys. Lett. 83 3081

    [8]

    Sun C T, Zhang H 2003 J. Appl. Phys. 93 1212

    [9]

    Bao F, Yu H, Lu Q, Huang Q 2007 Chin. J. Semi. 28 1979

    [10]

    Lu Q R, Bao F, Yu H, Huang Q A 2008 Chin. J. Sens. Actuat. 21 469 (in Chinese) [陆清茹, 鲍芳, 于虹, 黄庆安 2008 传感技术学报 21 469]

    [11]

    Wang J, Huang Q A, Yu H 2008 Appl. Surf. Sci. 255 2449

    [12]

    L H L, Wang J 2015 Acta Phys. Sin. 64 236103 (in Chinese) [吕焕玲, 王静 2015 64 236103]

    [13]

    Gong B, Chen Q, Wang D 2012 Mater. Lett. 67 165

    [14]

    Cao G B, Chen Y F, Jiao J W, Wang Y L 2007 Mech. Res. Commun. 34 503

    [15]

    Pishkenari H N, Afsharmanesh B, Tajaddodianfar F 2016 Int. J. Eng. Sci. 100 8

    [16]

    L H L, Wang J 2016 J. Xinjiang Univ. 33 421 (in Chinese) [吕焕玲, 王静 2016 新疆大学学报 33 421]

    [17]

    Rcker H, Methfessel M 1995 Phys. Rev. B 52 11059

    [18]

    Wang J 2012 The Sixth Asia-Pacific Conference on Transducers and Micro/Nano Technologies Nanjing, China, July 8-11, 2012 ac12000109

    [19]

    Krivtsov A M, Morozovv N F 2002 Phys. Solid State 44 2260

    [20]

    Xu Y, Zhang L C, Yu T X 1987 Int. J. Mech. Sci. 29 425

    [21]

    Wang J, Huang Q A, Yu H 2008 J. Phys. D: Appl. Phys. 41 165406

    [22]

    Park S H, Kim J S, Park J H, Lee J S, Choi Y K, Kwon O M 2005 Thin Sol. Films 492 285

    [23]

    Li Y N, Zhao J, Guo T 2008 J. Tianjin Univ. 41 7 (in Chinese) [李艳宁, 赵景, 郭彤 2008 天津大学学报 41 7]

    [24]

    Pishkenari H N, Afsharmanesh B, Akbari E 2015 Curr. Appl. Phys. 15 1389

    [25]

    Tang Z, Alueu N R 2006 Phys. Rev. B 74 235441

  • [1] 张羿双, 桑永杰, 陈永耀, 吴帅. Janus-Helmholtz换能器的振动模态谐振频率理论分析研究.  , 2024, 73(3): 034303. doi: 10.7498/aps.73.20231251
    [2] 邓晨华, 于忠海, 王宇涛, 孔森, 周超, 杨森. Ti掺杂Nd2Fe14B/α-Fe纳米双相复合永磁体晶化动力学.  , 2023, 72(2): 027501. doi: 10.7498/aps.72.20221479
    [3] 亢玉彬, 唐吉龙, 李科学, 李想, 侯效兵, 楚学影, 林逢源, 王晓华, 魏志鹏. Be, Si掺杂调控GaAs纳米线结构相变及光学特性.  , 2021, 70(20): 207804. doi: 10.7498/aps.70.20210782
    [4] 张华林, 何鑫, 张振华. 过渡金属原子掺杂的锯齿型磷烯纳米带的磁电子学特性.  , 2021, 70(5): 056101. doi: 10.7498/aps.70.20201408
    [5] 于鹏, 曹盛, 曾若生, 邹炳锁, 赵家龙. 金属离子掺杂提高全无机钙钛矿纳米晶发光性质的研究进展.  , 2020, 69(18): 187801. doi: 10.7498/aps.69.20200795
    [6] 朱学文, 徐利春, 刘瑞萍, 杨致, 李秀燕. N-F共掺杂锐钛矿二氧化钛(101)面纳米管的第一性原理研究.  , 2015, 64(14): 147103. doi: 10.7498/aps.64.147103
    [7] 刘奎立, 周思华, 陈松岭. 金属离子掺杂对CuO基纳米复合材料的交换偏置调控.  , 2015, 64(13): 137501. doi: 10.7498/aps.64.137501
    [8] 李培, 王辅忠, 张丽珠, 张光璐. 左手介质对谐振腔谐振频率的影响.  , 2015, 64(12): 124103. doi: 10.7498/aps.64.124103
    [9] 吕焕玲, 王静. 掺杂单晶硅纳米薄膜杨氏模量的多尺度理论模型.  , 2015, 64(23): 236103. doi: 10.7498/aps.64.236103
    [10] 王艳丽, 苏克和, 颜红侠, 王欣. C在不同位置掺杂(n,n)型BN纳米管的密度泛函研究.  , 2014, 63(4): 046101. doi: 10.7498/aps.63.046101
    [11] 廖建, 谢召起, 袁健美, 黄艳平, 毛宇亮. 3d过渡金属Co掺杂核壳结构硅纳米线的第一性原理研究.  , 2014, 63(16): 163101. doi: 10.7498/aps.63.163101
    [12] 杨双波. 温度与外磁场对Si均匀掺杂的GaAs量子阱电子态结构的影响.  , 2014, 63(5): 057301. doi: 10.7498/aps.63.057301
    [13] 万步勇, 苑进社, 冯庆, 王奥. K,Na掺杂Cu-S纳米晶的水热合成及对结构、性能的影响.  , 2013, 62(17): 178102. doi: 10.7498/aps.62.178102
    [14] 胡小会, 许俊敏, 孙立涛. 金掺杂锯齿型石墨烯纳米带的电磁学特性研究.  , 2012, 61(4): 047106. doi: 10.7498/aps.61.047106
    [15] 王英龙, 王秀丽, 梁伟华, 郭建新, 丁学成, 褚立志, 邓泽超, 傅广生. 不同浓度Er掺杂Si纳米晶粒电子结构和光学性质的第一性原理研究.  , 2011, 60(12): 127302. doi: 10.7498/aps.60.127302
    [16] 张建东, 杨春, 陈元涛, 张变霞, 邵文英. 金原子掺杂的碳纳米管吸附CO气体的密度泛函理论研究.  , 2011, 60(10): 106102. doi: 10.7498/aps.60.106102
    [17] 乐伶聪, 马新国, 唐豪, 王扬, 李翔, 江建军. 过渡金属掺杂钛酸纳米管的电子结构和光学性质研究.  , 2010, 59(2): 1314-1320. doi: 10.7498/aps.59.1314
    [18] 梁伟华, 丁学成, 褚立志, 邓泽超, 郭建新, 吴转花, 王英龙. 镍掺杂硅纳米线电子结构和光学性质的第一性原理研究.  , 2010, 59(11): 8071-8077. doi: 10.7498/aps.59.8071
    [19] 施德恒, 孙金锋, 马 恒, 朱遵略. 7Li2分子2 3Σ+g激发态的解析势能函数、谐振频率及振动能级.  , 2007, 56(4): 2085-2091. doi: 10.7498/aps.56.2085
    [20] 皇甫鲁江, 朱长纯, 淮永进. 掺杂浓度对硅锥阴极特性的影响.  , 2002, 51(2): 382-388. doi: 10.7498/aps.51.382
计量
  • 文章访问数:  5777
  • PDF下载量:  162
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-23
  • 修回日期:  2017-02-28
  • 刊出日期:  2017-05-05

/

返回文章
返回
Baidu
map