搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于石墨烯超表面的宽带电磁诱导透明研究

宁仁霞 鲍婕 焦铮

引用本文:
Citation:

基于石墨烯超表面的宽带电磁诱导透明研究

宁仁霞, 鲍婕, 焦铮

Wide band electromagnetically induced transparency in graphene metasurface of composite structure

Ning Ren-Xia, Bao Jie, Jiao Zheng
PDF
导出引用
  • 提出了一种新的基于石墨烯超表面的复合结构,该结构由带有空气槽的石墨烯条、氮化镓、二氧化硅和二氧化钛组成.通过时域有限差分法研究了该结构的电磁特性,研究结果表明,该结构具有更宽频带的电磁诱导透明特性.从结构参数、电磁场分布等方面研究了电磁诱导透明的物理机理.在该结构中,石墨烯条作为明模存在,耦合作为暗模的空气槽和氮化镓侧板,即存在两种明暗模耦合的现象,因此产生宽带的电磁诱导透明现象.从研究结果发现该结构可以产生多个频点的慢光效应和传感效应,因此在光存储、红外波段的传感器设计中具有一定的指导意义和潜在的应用.
    The electromagnetic induction transparency (EIT) is a phenomenon in which the originally opaque medium becomes transparent under certain resonant electromagnetic fields. It has been seen in applications ranging from nonlinear optics, slow light and optical storage. From the viewpoint of single-frequency, researchers have paid much attention to the realization of broadband electromagnetic induction transparency in recent years. In this paper, a broadband electromagnetic induction transparency effect is investigated theoretically by the finite difference time-domain method. A composite structure based on graphene metasurface which consists of graphene strip with air groove, gallium nitride, silica and titanium dioxide is designed in infrared range. A broadband electromagnetically induced transparency effect could be found in the designed composite structure compared with those in several similar structure. The electromagnetically induced transparency window can be tuned gently by the width of air groove and gallium nitride dielectric slabs. The results show that a wideband electromagnetically induced transparency window of 4 terahertz is found in the infrared frequency range. By comparison with the existing research results, a wider band of electromagnetically induced transparency is found in our structure. We study the physical mechanism of broadband electromagnetically induced transparency from the aspects of structural parameters and electromagnetic field distribution. The thickness w1 of gallium nitride, the width wa and depth h of air groove on graphene strip are discussed in this article. The smaller the length wa or depth h, the wider the EIT band is. The peak of high frequency at which the transmission is near to zero is blue-shifted as h increases. However, red-shift is found as width wa increases. It is found that graphene strip exists as a bright mode. coupling action acts as air groove and gallium nitride slabs function as dark mode, resulting in broadband electromagnetic induced transparency. That is to say, the principle of broadband electromagnetically induced transparency is due to a bright mode coupling in two different forms of dark mode, thus widening the transmission band. This work provides a kind of structure and a design way, to gain the broadband of electromagnetically induced transparency effect. Moreover, it is found that changing the refractive index of background medium, the frequency of high frequency band has a red-shift, the greater change of the refractive index can lead to smaller frequency range. It can be seen that the values of group index ng of three frequency peaks exceeding 25 are observed. The results also show that the slow-light effect and the sensing effect in several frequency ranges are obtained in the proposed structure and potential applications in the optical storage and highly sensitive infrared-band sensor, infrared optical switching, etc.
      通信作者: 宁仁霞, nrxxiner@hsu.ed.cn
      Corresponding author: Ning Ren-Xia, nrxxiner@hsu.ed.cn
    [1]

    Xia H, Sharpe S J, Merriam A J, Harris S E 1997 Phys. Rev. A 56 315

    [2]

    Wang Z, Yu B 2013 J. Appl. Phys. 113 113101

    [3]

    Liu C, Dutton Z, Behroozi C H, Hau L V 2001 Nature 409 490

    [4]

    Qin L, Zhang K, Peng R W, Xiong X, Zhang W, Huang X R, Wang M 2013 Phys. Rev. B 87 125136

    [5]

    Meng F Y, Zhang F, Zhang K, Wu Q, Kim J Y, Choi J J, Lee J C 2011 IEEE Trans. Magn. 47 3347

    [6]

    Gu J, Singh R, Liu X, Zhang X, Ma Y, Zhang S, Taylor A J 2012 Nat. Commun. 3 1151

    [7]

    Zhang J, Xiao S, Jeppesen C, Kristensen A, Mortensen N A 2010 Opt. Express 18 17187

    [8]

    Zhang X, Fan Y, Qi L, Li H 2016 Opt. Mat. Express 6 2448

    [9]

    Raza S, Bozhevolnyi S I 2015 Opt. Lett. 40 4253

    [10]

    Shao J, Li J, Li J, Wang Y K, Dong Z G, Chen P, Zhai Y 2013 Appl. Phys. Lett. 102 034106

    [11]

    Hwang J S, Yoo Y J, Kim Y J, Kim K W, Chen L Y, Lee Y P 2016 Curr. Appl. Phys. 16 469

    [12]

    Hu S, Yang H, Han S, Huang X, Xiao B 2015 J. Appl. Phys. 117 043107

    [13]

    Wan M, Song Y, Zhang L, Zhou F 2015 Opt. Express 23 27361

    [14]

    Ding J, Arigong B, Ren H, Zhou M, Shao J, Lu M, Zhang H 2014 Sci. Rep. 4 6128

    [15]

    Mikhailov S A, Ziegler K 2007 Phys. Rev. Lett. 99 016803

    [16]

    Falkovsky L A 2008 J. Phys.: Conf. Ser. 129 012004

    [17]

    Vakil A, Engheta N 2011 Science 332 1291

    [18]

    Frederikse H P R 1998 Handbook of Chemistry and Physics 1999 12

    [19]

    Lian Y, Ren G, Liu H, Gao Y, Zhu B, Wu B, Jian S 2016 Opt. Commun. 380 267

    [20]

    He X J, Wang J M, Tian X H, Jiang J X, Geng Z X 2013 Opt. Commun. 291 371

    [21]

    Bai Q, Liu C, Chen J, Cheng C, Kang M, Wang H T 2010 J. Appl. Phys. 107 093104

  • [1]

    Xia H, Sharpe S J, Merriam A J, Harris S E 1997 Phys. Rev. A 56 315

    [2]

    Wang Z, Yu B 2013 J. Appl. Phys. 113 113101

    [3]

    Liu C, Dutton Z, Behroozi C H, Hau L V 2001 Nature 409 490

    [4]

    Qin L, Zhang K, Peng R W, Xiong X, Zhang W, Huang X R, Wang M 2013 Phys. Rev. B 87 125136

    [5]

    Meng F Y, Zhang F, Zhang K, Wu Q, Kim J Y, Choi J J, Lee J C 2011 IEEE Trans. Magn. 47 3347

    [6]

    Gu J, Singh R, Liu X, Zhang X, Ma Y, Zhang S, Taylor A J 2012 Nat. Commun. 3 1151

    [7]

    Zhang J, Xiao S, Jeppesen C, Kristensen A, Mortensen N A 2010 Opt. Express 18 17187

    [8]

    Zhang X, Fan Y, Qi L, Li H 2016 Opt. Mat. Express 6 2448

    [9]

    Raza S, Bozhevolnyi S I 2015 Opt. Lett. 40 4253

    [10]

    Shao J, Li J, Li J, Wang Y K, Dong Z G, Chen P, Zhai Y 2013 Appl. Phys. Lett. 102 034106

    [11]

    Hwang J S, Yoo Y J, Kim Y J, Kim K W, Chen L Y, Lee Y P 2016 Curr. Appl. Phys. 16 469

    [12]

    Hu S, Yang H, Han S, Huang X, Xiao B 2015 J. Appl. Phys. 117 043107

    [13]

    Wan M, Song Y, Zhang L, Zhou F 2015 Opt. Express 23 27361

    [14]

    Ding J, Arigong B, Ren H, Zhou M, Shao J, Lu M, Zhang H 2014 Sci. Rep. 4 6128

    [15]

    Mikhailov S A, Ziegler K 2007 Phys. Rev. Lett. 99 016803

    [16]

    Falkovsky L A 2008 J. Phys.: Conf. Ser. 129 012004

    [17]

    Vakil A, Engheta N 2011 Science 332 1291

    [18]

    Frederikse H P R 1998 Handbook of Chemistry and Physics 1999 12

    [19]

    Lian Y, Ren G, Liu H, Gao Y, Zhu B, Wu B, Jian S 2016 Opt. Commun. 380 267

    [20]

    He X J, Wang J M, Tian X H, Jiang J X, Geng Z X 2013 Opt. Commun. 291 371

    [21]

    Bai Q, Liu C, Chen J, Cheng C, Kang M, Wang H T 2010 J. Appl. Phys. 107 093104

  • [1] 冯奎胜, 李娜, 李桐. 有源器件混合集成的超薄超宽带可调雷达吸波体.  , 2022, 71(3): 034101. doi: 10.7498/aps.71.20211254
    [2] 高海燕, 杨欣达, 周波, 贺青, 韦联福. 耦合诱导的四分之一波长超导谐振器微波传输透明.  , 2022, 71(6): 064202. doi: 10.7498/aps.71.20211758
    [3] 冯奎胜, 李娜, 李桐. 有源器件混合集成的超薄超宽带可调雷达吸波体.  , 2021, (): . doi: 10.7498/aps.70.20211254
    [4] 高喜, 唐李光. 基于双层超表面的宽带、高效透射型轨道角动量发生器.  , 2021, 70(3): 038101. doi: 10.7498/aps.70.20200975
    [5] 张跃斌, 马成举, 张垚, 金嘉升, 鲍士仟, 李咪, 李东明. 基于非对称结构全介质超材料的类电磁诱导透明效应研究.  , 2021, 70(19): 194201. doi: 10.7498/aps.70.20210070
    [6] 褚培新, 张玉斌, 陈俊学. 开口狭缝调制的耦合微腔中表面等离激元诱导透明特性.  , 2020, 69(13): 134205. doi: 10.7498/aps.69.20200369
    [7] 周璐, 赵国忠, 李晓楠. 基于双开口谐振环超表面的宽带太赫兹涡旋光束产生.  , 2019, 68(10): 108701. doi: 10.7498/aps.68.20182147
    [8] 高强, 王晓华, 王秉中. 基于宽带立体超透镜的远场超分辨率成像.  , 2018, 67(9): 094101. doi: 10.7498/aps.67.20172608
    [9] 王越, 冷雁冰, 王丽, 董连和, 刘顺瑞, 王君, 孙艳军. 基于石墨烯振幅可调的宽带类电磁诱导透明超材料设计.  , 2018, 67(9): 097801. doi: 10.7498/aps.67.20180114
    [10] 李唐景, 梁建刚, 李海鹏, 牛雪彬, 刘亚峤. 基于单层线-圆极化转换聚焦超表面的宽带高增益圆极化天线设计.  , 2017, 66(6): 064102. doi: 10.7498/aps.66.064102
    [11] 杨光, 王杰, 王军民. 采用高信噪比电磁诱导透明谱测定85Rb原子5D5/2态的超精细相互作用常数.  , 2017, 66(10): 103201. doi: 10.7498/aps.66.103201
    [12] 韩江枫, 曹祥玉, 高军, 李思佳, 张晨. 一种基于超材料的宽带、反射型90极化旋转体设计.  , 2016, 65(4): 044201. doi: 10.7498/aps.65.044201
    [13] 李唐景, 梁建刚, 李海鹏. 基于单层反射超表面的宽带圆极化高增益天线设计.  , 2016, 65(10): 104101. doi: 10.7498/aps.65.104101
    [14] 侯海生, 王光明, 李海鹏, 蔡通, 郭文龙. 超薄宽带平面聚焦超表面及其在高增益天线中的应用.  , 2016, 65(2): 027701. doi: 10.7498/aps.65.027701
    [15] 郭飞, 杜红亮, 屈绍波, 夏颂, 徐卓, 赵建峰, 张红梅. 基于磁/电介质混合型基体的宽带超材料吸波体的设计与制备.  , 2015, 64(7): 077801. doi: 10.7498/aps.64.077801
    [16] 李勇峰, 张介秋, 屈绍波, 王甲富, 吴翔, 徐卓, 张安学. 二维宽带相位梯度超表面设计及实验验证.  , 2015, 64(9): 094101. doi: 10.7498/aps.64.094101
    [17] 王莹, 程用志, 聂彦, 龚荣洲. 基于集总元件的低频宽带超材料吸波体设计与实验研究.  , 2013, 62(7): 074101. doi: 10.7498/aps.62.074101
    [18] 杨欢欢, 曹祥玉, 高军, 刘涛, 李思佳, 赵一, 袁子东, 张浩. 基于电磁谐振分离的宽带低雷达截面超材料吸波体.  , 2013, 62(21): 214101. doi: 10.7498/aps.62.214101
    [19] 陈吴玉婷, 韩鹏昱, Kuo Mei-Ling, Lin Shawn-Yu, 张希成. 具有缓变折射率的太赫兹宽带增透器件.  , 2012, 61(8): 088401. doi: 10.7498/aps.61.088401
    [20] 张庆斌, 兰鹏飞, 洪伟毅, 廖青, 杨振宇, 陆培祥. 控制场对宽带超连续谱产生的影响.  , 2009, 58(7): 4908-4913. doi: 10.7498/aps.58.4908
计量
  • 文章访问数:  7542
  • PDF下载量:  572
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-15
  • 修回日期:  2017-02-16
  • 刊出日期:  2017-05-05

/

返回文章
返回
Baidu
map