搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激波/边界层干扰对等离子体合成射流的响应特性

王宏宇 李军 金迪 代辉 甘甜 吴云

引用本文:
Citation:

激波/边界层干扰对等离子体合成射流的响应特性

王宏宇, 李军, 金迪, 代辉, 甘甜, 吴云

Response of the shock wave/boundary layer interaction to the plasma synthetic jet

Wang Hong-Yu, Li Jun, Jin Di, Dai Hui, Gan Tian, Wu Yun
PDF
导出引用
  • 利用高速纹影系统和数值模拟方法研究了激波/边界层干扰对逆流喷射的等离子体合成射流的响应特性,并揭示了流动控制机理. 实验在来流马赫数Ma=3.1的风洞中进行,测试模型采用钝头体和压缩斜坡的组合模型,等离子体合成射流激励器安装在钝头体头部. 纹影系统捕捉了放电频率为f=1 kHz和f=3 kHz的激励对附体激波形态和分离激波运动的控制效果. 等离子体合成射流使压缩斜坡激波/边界层干扰区域的起始点向下游移动,分离泡尺寸减小,附体激波强度减弱,发生弯曲,再附点移向上游,与此同时分离激波向附体激波逼近. 与f=3 kHz激励相比,f=1 kHz激励的射流流量更大,对激波/边界层干扰的影响范围更广、控制效果更好. 通过数值模拟,揭示了射流与来流相互作用对下游流场的作用机理:射流与来流相互作用诱导出大尺度旋涡,大尺度旋涡耗散发展增强了近壁面流场的湍流度;压缩斜坡上游近壁面的流场性质发生变化,进而导致了压缩斜坡激波/边界层干扰区域流动的变化.
    Control of shock wave/boundary layer interaction (SWBLI) is of high practical importance for supersonic aircraft drag reducing. Lots of flow control strategies including passive and active control techniques have been put forward to minimize negative effect of SWBLI.Plasma aerodynamic control technique is considered as a potential one due to its flexibility in manipulating the supersonic flow. The goal of this research is to investigate the control effect of the novel actuator called plasma synthetic jet on the SWBLI.The effect of counter-flow plasma synthetic jet actuator on the SWBLI is investigated experimentally in this paper. The experiments are conducted in a supersonic wind tunnel at Mach number Ma=3.1. The test model is a blunt body with a plasma synthetic jet actuator installed inside its head which is used to create aerodynamic perturbations, and with a conical compression ramp in the rear, enabling the creation of SWBLI flow configuration. The plasma synthetic jet actuator is designed to inject pulsed hot gas by arc discharge into a small cavity in the direction perpendicular to the normal shock wave induced by the blunt body. The schlieren method is used for flow measurement and the flow characteristics are studied according to a sequence of schlieren images (1024512 pixel resolution) captured by a high speed charge-couple device camera with a framing rate of 58 kHz, triggered externally, and an exposure time of 1 s. Additionally, the mechanism of this control strategy on the SWBLI induced by the ramp is revealed by using the numerical method.The characteristics of the plasma synthetic jet in quiescent air are firstly studied. The results show a sudden reduction of averaged jet velocity under the resistance of the air. In addition, some small-scale flow structures in the jet are observed which may enhance the turbulence in the upstream boundary layer. The flow topology of interaction modified by actuation with frequencies of f=1 kHz and f=3 kHz are respectively analyzed. It is shown that by using this type of control strategy, the attached shock is locally degraded with the attachment point moving upward. The separation bubble is suppressed, hence making the separation shock move downstream. In addition, an extensive impact effect is exerted to the interaction region by actuation at f=1 kHz because more hot gas is produced by the actuator. Therefore, the actuator is found to be capable of significantly mitigating the negative effects induced by the SWBLI. The numerical work focuses on the interaction between the jet and the flow after the normal shock. The results show that large-scale vortex is induced by the interaction which increases turbulence and accelerates the flow near the wall during its moving downstream and dissipation, demonstrating turbulence enhancement in the boundary layer and a variation of upstream flow characteristics are the key factors for separation reduction and shock wave mitigation.
      通信作者: 李军, kltbwhy@126.com
    • 基金项目: 国家自然科学基金(批准号:51522606,51507187,51276197,51407197,11472306)资助的课题.
      Corresponding author: Li Jun, kltbwhy@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51522606, 51507187, 51276197, 51407197, 11472306).
    [1]

    Lu F K, Li Q, Liu C 2012 Prog. Aerosp. Sci. 53 30

    [2]

    Gaitonde D V 2015 Prog. Aerosp. Sci. 72 80

    [3]

    Zhang Q H, Zhu T, Yi S H, Wu A P 2016 Chin. Phys. B 25 054701

    [4]

    Yan Y, Chen C, Lu P, Liu C 2013 Aerosp. Sci. Technol. 30 226

    [5]

    Estruch-Samper D, Vanstone L, Hillier R, Ganapathisubramani B 2015 Shock Waves 25 521

    [6]

    Verma S B, Manisankar C 2012 AIAA J. 50 2753

    [7]

    Titchener N, Babinsky H 2013 AIAA J. 51 1221

    [8]

    Kornilov V I 2015 Prog. Aerosp. Sci. 76 1

    [9]

    Belinger A, Naude N, Cambronne J P, Caruana D 2014 J. Phys. D 47 345202

    [10]

    Cheng Y F, Nie W S, Li G Q 2012 Acta Phys. Sin. 61 060509 (in Chinese) [程钰锋, 聂万胜, 李国强 2012 61 060509]

    [11]

    Falempin F, Firsov A, Yarantsev D A, Goldfeld M A, Sergey K T, Leonov B 2015 Exp. Fluids 56 1

    [12]

    Su C B, Li Y H, Wang J, Cao J, Li Y H 2010 Chin. J. Aeronaut. 23 22

    [13]

    Ekaterinaris J A 2009 19th AIAA Computational Fluid Dynamics San Antonio, Texas, June 22-25, 2009 p4151

    [14]

    Houpt A, Gordeyev S, Juliano T, Leonov S 2016 54th AIAA Aerospace Sciences Meeting San Diego, California, January 4-8, 2016 p2160

    [15]

    Webb N, Clifford C, Samimy M 2013 Exp. Fluids 54 1545

    [16]

    Sasoh A, Iwakawa A, Osuka T, Majima R 2014 7th AIAA Flow Control Conference Atlanta, GA June 1620, 2014 p2369

    [17]

    Narayanaswamy V, Shin J, Clemens N T, Raja L L 2008 46th AIAA Aerospace Sciences Meeting and Exhibit Reno, Nevada, January 7-10, 2008 p285

    [18]

    Narayanaswamy V, Clemens N T, Raja L L 2010 48th AIAA Aerospace Sciences Meeting Orlando, Florida, January 4-7, 2010 p1089

    [19]

    Jin D, Li Y H, Jia M, Song H M Cui W, Sun Q, Li F Y 2013 Plasma Sci. Technol. 15 1034

    [20]

    Zong H H, Wu Y, Jia M, Song H M 2016 J. Phys. D: Appl. Phys. 49 025504

    [21]

    Zong H H, Cui W, Wu Y, Zhang Z Z, Liang H, Jia M, Li Y H 2015 Sens. Actuators A 222 114

    [22]

    Zhang Z B, Wu Y, Jia M, Zong H H, Cui W, Liang H, Li Y H 2015 Sens. Actuators A 235 71

    [23]

    Greene B R, Clemens N T, Magari P, Micka D 2015 Shock Waves 25 495

    [24]

    Yang G, Yao Y, Fang J, Gan T, Lu L 2016 Chin. J. Aeronaut. 29 617

    [25]

    Emerick T, Ali M Y, Foster C, Alvi F S, Popkin S 2014 Exp. Fluids 55 1858

    [26]

    Wang L 2014 Ph. D. Dissertation (Changsha: Graduate School of National University of Defense Technology) (in Chinese) [王林 2014 博士学位论文(长沙: 国防科学技术大学)]

    [27]

    Tamba T, Pham H S, Shoda T, Iwakawa A, Sasoh A 2015 Phys. Fluids 27 091704

    [28]

    Narayanaswamy V, Raja L L, Clemens N T 2012 Phys. Fluids 24 543

    [29]

    Haack S J, Taylor T, Emhoff J, Cybyk B 2010 5th Flow Control Conference Chicago, Illinois, June 28-July 1, 2010 p4979

    [30]

    Jin D, Cui W, Li Y, Li F Y, Jia M, Sun Q, Zhang Z B 2015 Chin. J. Aeronaut. 28 66

  • [1]

    Lu F K, Li Q, Liu C 2012 Prog. Aerosp. Sci. 53 30

    [2]

    Gaitonde D V 2015 Prog. Aerosp. Sci. 72 80

    [3]

    Zhang Q H, Zhu T, Yi S H, Wu A P 2016 Chin. Phys. B 25 054701

    [4]

    Yan Y, Chen C, Lu P, Liu C 2013 Aerosp. Sci. Technol. 30 226

    [5]

    Estruch-Samper D, Vanstone L, Hillier R, Ganapathisubramani B 2015 Shock Waves 25 521

    [6]

    Verma S B, Manisankar C 2012 AIAA J. 50 2753

    [7]

    Titchener N, Babinsky H 2013 AIAA J. 51 1221

    [8]

    Kornilov V I 2015 Prog. Aerosp. Sci. 76 1

    [9]

    Belinger A, Naude N, Cambronne J P, Caruana D 2014 J. Phys. D 47 345202

    [10]

    Cheng Y F, Nie W S, Li G Q 2012 Acta Phys. Sin. 61 060509 (in Chinese) [程钰锋, 聂万胜, 李国强 2012 61 060509]

    [11]

    Falempin F, Firsov A, Yarantsev D A, Goldfeld M A, Sergey K T, Leonov B 2015 Exp. Fluids 56 1

    [12]

    Su C B, Li Y H, Wang J, Cao J, Li Y H 2010 Chin. J. Aeronaut. 23 22

    [13]

    Ekaterinaris J A 2009 19th AIAA Computational Fluid Dynamics San Antonio, Texas, June 22-25, 2009 p4151

    [14]

    Houpt A, Gordeyev S, Juliano T, Leonov S 2016 54th AIAA Aerospace Sciences Meeting San Diego, California, January 4-8, 2016 p2160

    [15]

    Webb N, Clifford C, Samimy M 2013 Exp. Fluids 54 1545

    [16]

    Sasoh A, Iwakawa A, Osuka T, Majima R 2014 7th AIAA Flow Control Conference Atlanta, GA June 1620, 2014 p2369

    [17]

    Narayanaswamy V, Shin J, Clemens N T, Raja L L 2008 46th AIAA Aerospace Sciences Meeting and Exhibit Reno, Nevada, January 7-10, 2008 p285

    [18]

    Narayanaswamy V, Clemens N T, Raja L L 2010 48th AIAA Aerospace Sciences Meeting Orlando, Florida, January 4-7, 2010 p1089

    [19]

    Jin D, Li Y H, Jia M, Song H M Cui W, Sun Q, Li F Y 2013 Plasma Sci. Technol. 15 1034

    [20]

    Zong H H, Wu Y, Jia M, Song H M 2016 J. Phys. D: Appl. Phys. 49 025504

    [21]

    Zong H H, Cui W, Wu Y, Zhang Z Z, Liang H, Jia M, Li Y H 2015 Sens. Actuators A 222 114

    [22]

    Zhang Z B, Wu Y, Jia M, Zong H H, Cui W, Liang H, Li Y H 2015 Sens. Actuators A 235 71

    [23]

    Greene B R, Clemens N T, Magari P, Micka D 2015 Shock Waves 25 495

    [24]

    Yang G, Yao Y, Fang J, Gan T, Lu L 2016 Chin. J. Aeronaut. 29 617

    [25]

    Emerick T, Ali M Y, Foster C, Alvi F S, Popkin S 2014 Exp. Fluids 55 1858

    [26]

    Wang L 2014 Ph. D. Dissertation (Changsha: Graduate School of National University of Defense Technology) (in Chinese) [王林 2014 博士学位论文(长沙: 国防科学技术大学)]

    [27]

    Tamba T, Pham H S, Shoda T, Iwakawa A, Sasoh A 2015 Phys. Fluids 27 091704

    [28]

    Narayanaswamy V, Raja L L, Clemens N T 2012 Phys. Fluids 24 543

    [29]

    Haack S J, Taylor T, Emhoff J, Cybyk B 2010 5th Flow Control Conference Chicago, Illinois, June 28-July 1, 2010 p4979

    [30]

    Jin D, Cui W, Li Y, Li F Y, Jia M, Sun Q, Zhang Z B 2015 Chin. J. Aeronaut. 28 66

  • [1] 杨孟奇, 吴福源, 陈致博, 张翼翔, 陈一, 张晋川, 陈致真, 方志凡, Rafael Ramis, 张杰. 高密度等离子体喷流高速对撞的二维辐射流体模拟研究.  , 2022, 71(22): 225202. doi: 10.7498/aps.71.20220948
    [2] 罗仕超, 吴里银, 常雨. 高超声速湍流流动磁流体动力学控制机理.  , 2022, 71(21): 214702. doi: 10.7498/aps.71.20220941
    [3] 牛中国, 许相辉, 王建锋, 蒋甲利, 梁华. 飞翼模型纵向气动特性等离子体流动控制试验.  , 2022, 71(2): 024702. doi: 10.7498/aps.71.20211425
    [4] 牛中国, 许相辉, 王建峰, 蒋甲利, 梁华. 飞翼模型纵向气动特性等离子体流动控制试验研究.  , 2021, (): . doi: 10.7498/aps.70.20211425
    [5] 吴金芳, 陈兆权, 张明, 张煌, 张三阳, 冯德仁, 周郁明. 微波瑞利散射法测定空气电火花激波等离子体射流的时变电子密度.  , 2020, 69(7): 075202. doi: 10.7498/aps.69.20191909
    [6] 唐冰亮, 郭善广, 宋国正, 罗彦浩. 脉冲电弧等离子体激励控制超声速平板边界层转捩实验.  , 2020, 69(15): 155201. doi: 10.7498/aps.69.20200216
    [7] 王鹏, 沈赤兵. 等离子体合成射流对超声速混合层的混合增强.  , 2019, 68(17): 174701. doi: 10.7498/aps.68.20190683
    [8] 刘强, 罗振兵, 邓雄, 杨升科, 蒋浩. 合成冷/热射流控制超声速边界层流动稳定性.  , 2017, 66(23): 234701. doi: 10.7498/aps.66.234701
    [9] 刘梦珂, 张辉, 范宝春, 韩洋, 归明月. 电磁控制两自由度涡生振荡的机理研究.  , 2016, 65(24): 244702. doi: 10.7498/aps.65.244702
    [10] 张鑫, 黄勇, 王万波, 唐坤, 李华星. 对称式布局介质阻挡放电等离子体激励器诱导启动涡.  , 2016, 65(17): 174701. doi: 10.7498/aps.65.174701
    [11] 赵光银, 李应红, 梁华, 化为卓, 韩孟虎. 纳秒脉冲表面介质阻挡等离子体激励唯象学仿真.  , 2015, 64(1): 015101. doi: 10.7498/aps.64.015101
    [12] 全鹏程, 易仕和, 武宇, 朱杨柱, 陈植. 激波与层流/湍流边界层相互作用实验研究.  , 2014, 63(8): 084703. doi: 10.7498/aps.63.084703
    [13] 王林, 夏智勋, 罗振兵, 周岩, 张宇. 两电极等离子体合成射流激励器工作特性研究.  , 2014, 63(19): 194702. doi: 10.7498/aps.63.194702
    [14] 尹纪富, 尤云祥, 李巍, 胡天群. 电磁力控制湍流边界层分离圆柱绕流场特性数值分析.  , 2014, 63(4): 044701. doi: 10.7498/aps.63.044701
    [15] 王林, 罗振兵, 夏智勋, 刘冰. 等离子体合成射流能量效率及工作特性研究.  , 2013, 62(12): 125207. doi: 10.7498/aps.62.125207
    [16] 管仁国, 赵占勇, 黄红乾, 连超, 钞润泽, 刘春明. 冷却倾斜板熔体处理过程边界层分布及流动传热的理论研究.  , 2012, 61(20): 206602. doi: 10.7498/aps.61.206602
    [17] 王健, 李应红, 程邦勤, 苏长兵, 宋慧敏, 吴云. 等离子体气动激励控制激波的机理研究.  , 2009, 58(8): 5513-5519. doi: 10.7498/aps.58.5513
    [18] 李钢, 李轶明, 徐燕骥, 张翼, 李汉明, 聂超群, 朱俊强. 介质阻挡放电等离子体对近壁区流场的控制的实验研究.  , 2009, 58(6): 4026-4033. doi: 10.7498/aps.58.4026
    [19] 邹 秀, 刘惠平, 谷秀娥. 磁化等离子体的鞘层结构.  , 2008, 57(8): 5111-5116. doi: 10.7498/aps.57.5111
    [20] 汪茂泉. 流动等离子体对托卡马克中撕裂模的影响.  , 1986, 35(9): 1227-1232. doi: 10.7498/aps.35.1227
计量
  • 文章访问数:  6437
  • PDF下载量:  370
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-28
  • 修回日期:  2017-01-26
  • 刊出日期:  2017-04-05

/

返回文章
返回
Baidu
map