搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超强激光与固体气体复合靶作用产生高能氦离子

矫金龙 贺书凯 邓志刚 卢峰 张镱 杨雷 张发强 董克攻 王少义 张博 滕建 洪伟 谷渝秋

引用本文:
Citation:

超强激光与固体气体复合靶作用产生高能氦离子

矫金龙, 贺书凯, 邓志刚, 卢峰, 张镱, 杨雷, 张发强, 董克攻, 王少义, 张博, 滕建, 洪伟, 谷渝秋

Helium ions acceleration by ultraintense laser interactions with foil-gas target

Jiao Jin-Long, He Shu-Kai, Deng Zhi-Gang, Lu Feng, Zhang Yi, Yang Lei, Zhang Fa-Qiang, Dong Ke-Gong, Wang Shao-Yi, Zhang Bo, Teng Jian, Hong Wei, Gu Yu-Qiu
PDF
导出引用
  • 激光氦离子源产生的MeV能量的氦离子因有望用于聚变反应堆材料辐照损伤的模拟研究而得到关注. 目前激光驱动氦离子源的主要方案是采用相对论激光与氦气射流作用加速高能氦离子,但这种方案在实验上难以产生具有前向性和准单能性、数MeV能量、高产额的氦离子束,而这些氦离子束特性是材料辐照损伤研究中十分关注的. 不同于上述激光氦离子产生方法,我们提出了一种利用超强激光与固体-气体复合靶作用产生氦离子的新方法. 利用这种方法,在实验上,采用功率密度51018 W/cm2的皮秒脉宽的激光脉冲与铜-氦气复合靶作用,产生了前向发射的2.7 MeV的准单能氦离子束,能量超过0.5 MeV的氦离子产额约为1013/sr. 二维粒子模拟显示,氦离子在靶背鞘场加速和类无碰撞冲击波加速两种加速机理共同作用下得到加速. 同时粒子模拟还显示氦离子截止能量与超热电子温度成正比.
    Laser-driven helium ion source with multi-MeV energy has an important application in the field of fusion reactor material irradiation damage. At present, the generating of high energy helium ions by relativistic ultraintense laser interacting with helium gas jet is the main scheme of laser-driven helium ion source. However, so far, this scheme has been hard to generate the helium ion beam with the characteristics, i.e., it is forward and quasi-monoenergetic and has multi-MeV in energy and high yield. These characteristics of helium ion beam are important for studying the material irradiation damage. In this paper, we propose a new scheme in which an ultraintense laser interacting with foil-gas complex target is used to generate helium ions. With this method, we perform an experiment on XingGuang III laser facility which has three laser beams with different laser durations (nanosecond, picosecond and femtosecond). In our experiment, we use a picosecond laser beam. The wavelength of this laser beam is 1054 nm and its duration is 0.8 ps. We use an off-axis parabola mirror to focus the 100 J energy of this laser beam onto a focal spot of 25 m far away. The laser intensity reaches 51018 W/cm2. The foil-gas target is composed of a copper foil with 7 m in thickness and a helium gas nozzle which is behind the copper foil. The helium gas nozzle can generate a helium gas jet with a full ionization electron density of 51019/cm3. We use the Thomson Parabola Spectrometer to record the helium ion signals and the Electron Magnetic Spectrometer to diagnose the hot electron temperature. In the experiment, the laser pulse interacts with the front surface of the copper foil and generates lots of hot electrons. These hot electrons result in the expansion of the rear surface of the copper foil. The expanding plasma accelerates the helium ions behind the copper foil. The experimental results show that the obtained helium ions are forward and quasi-monoenergetic (the peak energy is 2.7 MeV), and the total energy of the helium ions whose energies are all higher than 0.5 MeV is about 1.1 J/sr, and correspondingly the yield of helium ions is about 1013/sr. The helium ion spectrum and hot electron temperature given by particle in cell (PIC) simulation with using the experimental parameters are consistent with the experimental results. In addition, the PIC simulations also show that helium ions are accelerated by target normal sheath acceleration and collisionless shock acceleration-like mechanisms, and the maximum helium ion energy is proportional to the hot electron temperature.
      通信作者: 谷渝秋, yqgu@caep.cn
    • 基金项目: 中国工程物理研究院发展基金(批准号:2013A0103003)和科学挑战计划资助的课题.
      Corresponding author: Gu Yu-Qiu, yqgu@caep.cn
    • Funds: Project supported by the Development Foundation of China Academy of Engineering Physics (Grant No. 2013A0103003) and the Science Challenge Program of China Academy of Engineering Physics .
    [1]

    Daido H, Nishiuchi M, Pirozhkov A S 2012 Rep. Prog. Phys. 75 056401

    [2]

    Macchi A, Borghesi M, Passoni M 2013 Rev. Mod. Phys. 85 751

    [3]

    Wilks S C, Langdon A B, Cowan T E, Roth M, Singh M, Hatchett S, Key M H, Pennington D, MacKinnon A, Snavely R A 2001 Phys. Plasmas 8 542

    [4]

    Esirkepov T, Borghesi M, Bulanov S V, Mourou G, Tajima T 2004 Phys. Rev. Lett. 92 175003

    [5]

    Silva L O, Marti M, Davies J R, Fonseca R A, Ren C, Tsung F S, Mori W B 2004 Phys. Rev. Lett. 92 015002

    [6]

    Hasegawa A, Saito M, Nogami S, Abe K, Jones R H, Takahashi H 1999 J. Nucl. Mater. 264 355

    [7]

    Zheng H, Zhang C H, Chen B, Yang Y T, Lai X C 2014 Acta Phys. Sin. 63 106102 (in Chinese) [郑晖, 张崇宏, 陈波, 杨义涛, 赖新春 2014 63 106102]

    [8]

    Sarkisov G S, Bychenkov V Y, Novikov V N, Tikhonchuk V T 1999 Phys. Rev. E 59 7042

    [9]

    Krushelnick K, Clark E L, Najmudin Z, Salvati M, Santala M I K, Tatarakis M, Dangor A E 1999 Phys. Rev. Lett. 83 737

    [10]

    Wei M S, Mangles S P D, Najmudin Z, Walton B, Gopal A, Tatarakis M, Dangor A E, Clark E L, Evans R G, Fritzler S, Clarke R J, Hernandez-Gomez C, Neely D, Mori W, Tzoufras M, Krushelnick K 2004 Phys. Rev. Lett. 93 155003

    [11]

    Willingale L, Mangles S P D, Nilson P M, Clarke R J, Dangor A E, Kaluza M C, Karsch S, Lancaster K L, Mori W B, Najmudin Z, Schreiber J, Thomas A G R, Wei M S, Krushelnick K 2006 Phys. Rev. Lett. 96 245002

    [12]

    Fukuda Y, Faenov A Y, Tampo M, Pikuz T A, Nakamura T, Kando M, Hayashi Y, Yogo A, Sakaki H, Kameshima T, Pirozhkov A S, Ogura K, Mori M, Esirkepov T Z, Koga J, Boldarev A S, Gasilov V A, Magunov A I, Yamauchi T, Kodama R, Bolton P R, Kato Y, Tajima T, Daido H, Bulanov S V 2009 Phys. Rev. Lett. 103 165002

    [13]

    Lifschitz A, Sylla F, Kahaly S, Flacco A, Veltcheva M, Sanchez-Arriaga G, Lefebvre E, Malka V 2014 New J. Phys. 16 033031

    [14]

    Wang P X, Song J S 2002 Helium and Tritium Permeation in Materials (Beijing: National Defence Industry Press) p39 [王佩璇, 宋家树 2002 材料中的氦及氚渗透 (北京: 国防工业出版社) 第39页]

    [15]

    Wilks S C, Kruer W L, Tabak M, Langdon A B 1992 Phys. Rev. Lett. 69 1383

    [16]

    Wilks S C 1993 Phys. Fluids B 5 2603

    [17]

    Kruer W L 1988 The Physics of Laser Plasma Interactions (New York: Addison-Wesley) p133

    [18]

    Dieckmann M E, Sarri G, Romagnani L, Kourakis I, Borghesi M 2010 Plasma Phys. Control. Fusion 52 025001

    [19]

    Sarri G, Dieckmann M E, Kourakis I, Borghesi M 2010 Phys. Plasmas 17 082305

    [20]

    Sarri G, Dieckmann M E, Kourakis I, Borghesi M 2011 Phys. Rev. Lett. 107 025003

    [21]

    Sarri G, Murphy G C, Dieckmann M E, Bret A, Quinn K, Kourakis I, Borghesi M, Drury L O C, Ynnerman A 2011 New J. Phys. 13 073023

    [22]

    Beg F N, Bell A R, Dangor A E, Danson C N, Fews A P, Glinsky M E, Hammel B A, Lee P, Norreys P A, Tatarakis M 1997 Phys. Plasmas 4 447

  • [1]

    Daido H, Nishiuchi M, Pirozhkov A S 2012 Rep. Prog. Phys. 75 056401

    [2]

    Macchi A, Borghesi M, Passoni M 2013 Rev. Mod. Phys. 85 751

    [3]

    Wilks S C, Langdon A B, Cowan T E, Roth M, Singh M, Hatchett S, Key M H, Pennington D, MacKinnon A, Snavely R A 2001 Phys. Plasmas 8 542

    [4]

    Esirkepov T, Borghesi M, Bulanov S V, Mourou G, Tajima T 2004 Phys. Rev. Lett. 92 175003

    [5]

    Silva L O, Marti M, Davies J R, Fonseca R A, Ren C, Tsung F S, Mori W B 2004 Phys. Rev. Lett. 92 015002

    [6]

    Hasegawa A, Saito M, Nogami S, Abe K, Jones R H, Takahashi H 1999 J. Nucl. Mater. 264 355

    [7]

    Zheng H, Zhang C H, Chen B, Yang Y T, Lai X C 2014 Acta Phys. Sin. 63 106102 (in Chinese) [郑晖, 张崇宏, 陈波, 杨义涛, 赖新春 2014 63 106102]

    [8]

    Sarkisov G S, Bychenkov V Y, Novikov V N, Tikhonchuk V T 1999 Phys. Rev. E 59 7042

    [9]

    Krushelnick K, Clark E L, Najmudin Z, Salvati M, Santala M I K, Tatarakis M, Dangor A E 1999 Phys. Rev. Lett. 83 737

    [10]

    Wei M S, Mangles S P D, Najmudin Z, Walton B, Gopal A, Tatarakis M, Dangor A E, Clark E L, Evans R G, Fritzler S, Clarke R J, Hernandez-Gomez C, Neely D, Mori W, Tzoufras M, Krushelnick K 2004 Phys. Rev. Lett. 93 155003

    [11]

    Willingale L, Mangles S P D, Nilson P M, Clarke R J, Dangor A E, Kaluza M C, Karsch S, Lancaster K L, Mori W B, Najmudin Z, Schreiber J, Thomas A G R, Wei M S, Krushelnick K 2006 Phys. Rev. Lett. 96 245002

    [12]

    Fukuda Y, Faenov A Y, Tampo M, Pikuz T A, Nakamura T, Kando M, Hayashi Y, Yogo A, Sakaki H, Kameshima T, Pirozhkov A S, Ogura K, Mori M, Esirkepov T Z, Koga J, Boldarev A S, Gasilov V A, Magunov A I, Yamauchi T, Kodama R, Bolton P R, Kato Y, Tajima T, Daido H, Bulanov S V 2009 Phys. Rev. Lett. 103 165002

    [13]

    Lifschitz A, Sylla F, Kahaly S, Flacco A, Veltcheva M, Sanchez-Arriaga G, Lefebvre E, Malka V 2014 New J. Phys. 16 033031

    [14]

    Wang P X, Song J S 2002 Helium and Tritium Permeation in Materials (Beijing: National Defence Industry Press) p39 [王佩璇, 宋家树 2002 材料中的氦及氚渗透 (北京: 国防工业出版社) 第39页]

    [15]

    Wilks S C, Kruer W L, Tabak M, Langdon A B 1992 Phys. Rev. Lett. 69 1383

    [16]

    Wilks S C 1993 Phys. Fluids B 5 2603

    [17]

    Kruer W L 1988 The Physics of Laser Plasma Interactions (New York: Addison-Wesley) p133

    [18]

    Dieckmann M E, Sarri G, Romagnani L, Kourakis I, Borghesi M 2010 Plasma Phys. Control. Fusion 52 025001

    [19]

    Sarri G, Dieckmann M E, Kourakis I, Borghesi M 2010 Phys. Plasmas 17 082305

    [20]

    Sarri G, Dieckmann M E, Kourakis I, Borghesi M 2011 Phys. Rev. Lett. 107 025003

    [21]

    Sarri G, Murphy G C, Dieckmann M E, Bret A, Quinn K, Kourakis I, Borghesi M, Drury L O C, Ynnerman A 2011 New J. Phys. 13 073023

    [22]

    Beg F N, Bell A R, Dangor A E, Danson C N, Fews A P, Glinsky M E, Hammel B A, Lee P, Norreys P A, Tatarakis M 1997 Phys. Plasmas 4 447

  • [1] 赵娜, 欧阳建明, 邹德滨, 张国博, 甘龙飞, 邵福球. 基于锥形等离子体通道的百拍瓦激光脉冲整形及重离子加速.  , 2024, 73(16): 165202. doi: 10.7498/aps.73.20240696
    [2] 岳东宁, 董全力, 陈民, 赵耀, 耿盼飞, 远晓辉, 盛政明, 张杰. 强激光与亚临界密度等离子体相互作用中的近前向散射驱动光子加速机制.  , 2023, 72(12): 125201. doi: 10.7498/aps.72.20222014
    [3] 祝昕哲, 李博原, 刘峰, 李建龙, 毕择武, 鲁林, 远晓辉, 闫文超, 陈民, 陈黎明, 盛政明, 张杰. 面向激光等离子体尾波加速的毛细管放电实验研究.  , 2022, 71(9): 095202. doi: 10.7498/aps.71.20212435
    [4] 刘明伟, 龚顺风, 李劲, 姜春蕾, 张禹涛, 周并举. 低密等离子体通道中的非共振激光直接加速.  , 2015, 64(14): 145201. doi: 10.7498/aps.64.145201
    [5] 刘梦, 苏鲁宁, 郑轶, 李玉同, 王伟民, 盛政明, 陈黎明, 马景龙, 鲁欣, 王兆华, 魏志义, 胡碧涛, 张杰. 超短超强激光与薄膜靶相互作用中不同价态碳离子的来源.  , 2013, 62(16): 165201. doi: 10.7498/aps.62.165201
    [6] 徐妙华, 李红伟, 刘峰, 刘必成, 杜飞, 张璐, 苏鲁宁, 李英骏, 李玉同, 陈佳洱, 张杰. 实时离子探测器塑料闪烁体性能的实验研究.  , 2012, 61(10): 105202. doi: 10.7498/aps.61.105202
    [7] 张蕾, 董全力, 赵静, 王首钧, 盛政明, 何民卿, 张杰. 激光等离子体相互作用的受激拉曼散射饱和效应.  , 2009, 58(3): 1833-1837. doi: 10.7498/aps.58.1833
    [8] 何民卿, 董全力, 盛政明, 翁苏明, 陈民, 武慧春, 张杰. 强激光与稠密等离子体作用引起的冲击波加速离子的研究.  , 2009, 58(1): 363-372. doi: 10.7498/aps.58.363
    [9] 栾仕霞, 张秋菊, 桂维玲. 交叉传播激光脉冲与等离子体相互作用产生的等离子体密度光栅.  , 2008, 57(11): 7030-7037. doi: 10.7498/aps.57.7030
    [10] 刘占军, 朱少平, 曹莉华, 郑春阳. 利用一维Vlasov和Maxwell方程模拟激光等离子体相互作用.  , 2007, 56(12): 7084-7089. doi: 10.7498/aps.56.7084
    [11] 刘占军, 郑春阳, 曹莉华, 李 斌, 朱少平. 次稠密等离子体对激光与锥形靶相互作用的影响.  , 2006, 55(1): 304-309. doi: 10.7498/aps.55.304
    [12] 陈 民, 盛政明, 郑 君, 张 杰. 强激光与高密度气体相互作用中电子和离子加速的数值模拟.  , 2006, 55(5): 2381-2388. doi: 10.7498/aps.55.2381
    [13] 张 翼, 李玉同, 张 杰, 陈正林, R. Kodama. 超强激光与等离子体相互作用产生中子的计算.  , 2005, 54(10): 4799-4802. doi: 10.7498/aps.54.4799
    [14] 赖国俊, 季沛勇. 基于激光等离子体的光子加速.  , 2000, 49(12): 2399-2403. doi: 10.7498/aps.49.2399
    [15] 李毅. 热等离子体中的尾波加速.  , 1996, 45(4): 601-607. doi: 10.7498/aps.45.601
    [16] 常文蔚, 张立夫, 邵福球. 激光等离子体波电子加速器.  , 1991, 40(2): 182-189. doi: 10.7498/aps.40.182
    [17] 马锦秀, 徐至展. 双频强激光与等离子体相互作用中的双稳态效应.  , 1989, 38(5): 706-713. doi: 10.7498/aps.38.706
    [18] 马锦秀, 徐至展. 激光等离子体拍频波加速器中泵浦倒空的消除.  , 1988, 37(10): 1652-1657. doi: 10.7498/aps.37.1652
    [19] 徐至展, 殷光裕, 张燕珍, 林康春. 激光等离子体相互作用中的受激布里渊散射.  , 1983, 32(4): 481-489. doi: 10.7498/aps.32.481
    [20] 徐至展, 李安民, 陈时胜, 林礼煌, 梁向春, 欧阳斌, 毕无忌, 何兴法, 殷光裕, 张树干, 潘成明. 激光加热等离子体研究.  , 1981, 30(8): 1077-1084. doi: 10.7498/aps.30.1077
计量
  • 文章访问数:  5775
  • PDF下载量:  230
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-30
  • 修回日期:  2017-01-22
  • 刊出日期:  2017-04-05

/

返回文章
返回
Baidu
map