搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铜基底上双层至多层石墨烯常压化学气相沉积法制备与机理探讨

李浩 付志兵 王红斌 易勇 黄维 张继成

引用本文:
Citation:

铜基底上双层至多层石墨烯常压化学气相沉积法制备与机理探讨

李浩, 付志兵, 王红斌, 易勇, 黄维, 张继成

Preperetions of bi-layer and multi-layer graphene on copper substrates by atmospheric pressure chemical vapor deposition and their mechanisms

Li Hao, Fu Zhi-Bing, Wang Hong-Bin, Yi Yong, Huang Wei, Zhang Ji-Cheng
PDF
导出引用
  • 化学气相沉积是目前最重要的一种制备高质量、大面积石墨烯的方法.而铜是化学气相沉积法制备石墨烯中最常用的生长基底.虽然有大量文章报道了关于石墨烯的生长条件及生长机理,但是作为最广泛采用的材料,铜基底上双层及多层石墨烯的生长机理仍然在探索中.本文采用常压化学气相沉积法,以乙醇为碳源在铜基底上生长石墨烯,并将其转移到SiO2/Si基底上.用场发射扫描电镜、透射电镜、拉曼光谱、光学显微镜对所制备的石墨烯进行表征和层数分析,对转移到不同基底上的不同层数的石墨烯进行了透光性分析.结果表明,常压条件下铜箔表面能够生长出质量较高、连续性较好的双层至多层石墨烯.此外,我们还对铜基底上双层至多层石墨烯的生长机理进行了探讨.
    Chemical vapor deposition is widely utilized to synthesize graphene with controlled properties for many applications. And it is one of the most important methods for the preparation of graphene with high quality in large area. Cu substrate is most commonly used for the preparation of graphene in chemical vapor deposition. As is well known, the properties of graphene are greatly affected by the number of layers. However, the syntheses and mechanisms of bi-layer and multi-layer graphene on Cu substrates are still under debate. And how to make a breakthrough in realizing the controllable syntheses of bi-layer and multi-layer graphene on Cu substrates has become a direction for many researchers. In this work, we report bi-layer and multi-layer graphene on Cu substrates prepared by atmospheric pressure chemical vapor deposition. Firstly, the Cu foil is placed on the quartz slides of the tube furnace and heated to 1000℃ with a rate of 15℃/min. After reaching 1000℃, the Cu foilis annealed for 2 h in a gas mixture of hydrogen (20 sccm) and argon (380 sccm). After that, the graphene growth is carried out at 1000℃ under an 80 sccm gas mixture of argon and ethanol. Then, the samples are cooled down to the room temperature with a rate of 100℃/min in a protection gas of hydrogen and argon, and then taken out of the furnace. The graphene is prepared on the Cu foils and finally transferred onto the SiO2/Si substrates. The quality and number of layers of the as-produced graphene are assessed by field emission scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, and optical microscopy. By tuning the graphene growth, the monolayer, bi-layer and multi-layer graphene with higer quality and better continuity are obtained. And the growth times of monolayer, bi-layer, and four-layers graphene are respectively 25, 40, and 60 s. And wefind that the graphene layer will be increased in the process of insulation. The growth mechanisms of bi-layer and multi-layer graphene on copper substrates by atmospheric pressure chemical vapor deposition are also discussed. There will be some indiffusible carbon atoms or radicals near the copper foil surface due to the small molecular diffusion mean free path under normal pressure. We suggeste that the bi-layer and multi-layer graphene grown on copper substrates by atmospheric pressure chemical vapor deposition is dominated by van der Waals epitaxial mechanism. This work provides a reference for improving the quality of chemical vapor deposition monolayer, bi-layer and multi-layer graphene.
      通信作者: 张继成, zhangjccaep@126.com
    • 基金项目: 国家自然科学基金(批准号:11404304)、国家重大科学仪器设备开发专项(批准号:2014YQ090709)和中国工程物理研究院科学技术发展基金(批准号:2015B0302003)资助的课题.
      Corresponding author: Zhang Ji-Cheng, zhangjccaep@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11404304), the National Key Scientific Instrument and Equipment Development Project of China (Grant No. 2014YQ090709), and the Science and Technology Development Foundation of China Academy of Engineering Physics (Grant No. 2015B0302003).
    [1]

    Allen M J, Tung V C, Kaner R B 2010Chem.Rev. 110 132

    [2]

    Kim K S, Zhao Y, Jang H, Sang Y L, Kim J M, Kim K S 2009Nature 457 706

    [3]

    Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F 2008Nano Lett. 8 902

    [4]

    Wang W R, Zhou Y X, Li T, Wang Y L, Xie X M 2012Acta Phys.Sin. 61 038702(in Chinese)[王文荣, 周玉修, 李铁, 王跃林, 谢晓明2012 61 038702]

    [5]

    Kidambi P, Bayer B C, Blume R, Wang Z J, Baehtz C, Weatherup R S 2013Nano Lett. 13 4769

    [6]

    Kim Y S, Lee J H, Kim Y D, Jerng S K, Joo K, Kim E 2013Nanoscale 5 1221

    [7]

    Yamada T, Kim J, Ishihara M, Hasegawa M 2013J.Phys.D:Appl.Phys. 46 63001

    [8]

    Kwak J, Chu J H, Choi J K, Park S D, Go H, Kim S Y 2012Nat.Commun. 3 645

    [9]

    Luo B, Liu H, Jiang L, Jiang L, Geng D, Wu B 2013J.Mater.Chem.C 1 2990

    [10]

    John R, Ashokreddy A, Vijayan C, Pradeep T 2010Nanotechnology 22 165701

    [11]

    Gaddam S, Bjelkevig C, Ge S, Fukutani K, Dowben P A, Kelber J A 2011J.Phys.-Condens.Mat. 23 72204

    [12]

    Howsare C A, Weng X, Bojan V, Snyder D, Robinson J A 2012Nanotechnology 23 135601

    [13]

    Vlassiouk I, Smirnov S, Regmi M, Surwade S P, Srivastava N, Feenstra R 2013J.Phys.Chem.C 117 18919

    [14]

    Niu T, Zhou M, Zhang J, Feng Y, Chen W 2013J.Am.Chem.Soc. 135 8409

    [15]

    Kim S M, Kim J H, Kim K S, Hwangbo Y, Yoon J H, Lee E K 2014Nanoscale 6 4728

    [16]

    Li X, Cai W, An J, Kim S, Nah J, Yang D 2009Science 324 1312

    [17]

    Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T 2008Science 320 1308

    [18]

    Piner R, Li H, Kong X, Tao L, Kholmanov I N, Ji H 2013ACS Nano 7 7495

    [19]

    Yan K, Peng H, Zhou Y, Li H, Liu Z 2011Nano Lett. 11 1106

    [20]

    Lee S, Lee K, Zhong Z 2010Nano Lett. 10 4702

    [21]

    Zhao P, Kumamoto A, Kim S, Chen X, Hou B, Chiashi S 2013J.Phys.Chem.C 117 10755

  • [1]

    Allen M J, Tung V C, Kaner R B 2010Chem.Rev. 110 132

    [2]

    Kim K S, Zhao Y, Jang H, Sang Y L, Kim J M, Kim K S 2009Nature 457 706

    [3]

    Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F 2008Nano Lett. 8 902

    [4]

    Wang W R, Zhou Y X, Li T, Wang Y L, Xie X M 2012Acta Phys.Sin. 61 038702(in Chinese)[王文荣, 周玉修, 李铁, 王跃林, 谢晓明2012 61 038702]

    [5]

    Kidambi P, Bayer B C, Blume R, Wang Z J, Baehtz C, Weatherup R S 2013Nano Lett. 13 4769

    [6]

    Kim Y S, Lee J H, Kim Y D, Jerng S K, Joo K, Kim E 2013Nanoscale 5 1221

    [7]

    Yamada T, Kim J, Ishihara M, Hasegawa M 2013J.Phys.D:Appl.Phys. 46 63001

    [8]

    Kwak J, Chu J H, Choi J K, Park S D, Go H, Kim S Y 2012Nat.Commun. 3 645

    [9]

    Luo B, Liu H, Jiang L, Jiang L, Geng D, Wu B 2013J.Mater.Chem.C 1 2990

    [10]

    John R, Ashokreddy A, Vijayan C, Pradeep T 2010Nanotechnology 22 165701

    [11]

    Gaddam S, Bjelkevig C, Ge S, Fukutani K, Dowben P A, Kelber J A 2011J.Phys.-Condens.Mat. 23 72204

    [12]

    Howsare C A, Weng X, Bojan V, Snyder D, Robinson J A 2012Nanotechnology 23 135601

    [13]

    Vlassiouk I, Smirnov S, Regmi M, Surwade S P, Srivastava N, Feenstra R 2013J.Phys.Chem.C 117 18919

    [14]

    Niu T, Zhou M, Zhang J, Feng Y, Chen W 2013J.Am.Chem.Soc. 135 8409

    [15]

    Kim S M, Kim J H, Kim K S, Hwangbo Y, Yoon J H, Lee E K 2014Nanoscale 6 4728

    [16]

    Li X, Cai W, An J, Kim S, Nah J, Yang D 2009Science 324 1312

    [17]

    Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T 2008Science 320 1308

    [18]

    Piner R, Li H, Kong X, Tao L, Kholmanov I N, Ji H 2013ACS Nano 7 7495

    [19]

    Yan K, Peng H, Zhou Y, Li H, Liu Z 2011Nano Lett. 11 1106

    [20]

    Lee S, Lee K, Zhong Z 2010Nano Lett. 10 4702

    [21]

    Zhao P, Kumamoto A, Kim S, Chen X, Hou B, Chiashi S 2013J.Phys.Chem.C 117 10755

  • [1] 余欣秀, 李多生, 叶寅, 朗文昌, 刘俊红, 陈劲松, 于爽爽. 硬质合金表面镍过渡层对碳原子沉积与石墨烯生长影响的分子动力学模拟.  , 2024, 73(23): 238701. doi: 10.7498/aps.73.20241170
    [2] 丁业章, 叶寅, 李多生, 徐锋, 朗文昌, 刘俊红, 温鑫. WC-Co硬质合金表面石墨烯沉积生长分子动力学仿真研究.  , 2023, 72(6): 068703. doi: 10.7498/aps.72.20221332
    [3] 陈善登, 白清顺, 窦昱昊, 郭万民, 王洪飞, 杜云龙. 金刚石晶界辅助石墨烯沉积的成核机理仿真.  , 2022, 71(8): 086103. doi: 10.7498/aps.71.20211981
    [4] 王晓愚, 毕卫红, 崔永兆, 付广伟, 付兴虎, 金娃, 王颖. 基于化学气相沉积方法的石墨烯-光子晶体光纤的制备研究.  , 2020, 69(19): 194202. doi: 10.7498/aps.69.20200750
    [5] 白清顺, 窦昱昊, 何欣, 张爱民, 郭永博. 基于分子动力学模拟的铜晶面石墨烯沉积生长机理.  , 2020, 69(22): 226102. doi: 10.7498/aps.69.20200781
    [6] 王晓, 黄生祥, 罗衡, 邓联文, 吴昊, 徐运超, 贺君, 贺龙辉. 镍层间掺杂多层石墨烯的电子结构及光吸收特性研究.  , 2019, 68(18): 187301. doi: 10.7498/aps.68.20190523
    [7] 崔树稳, 李璐, 魏连甲, 钱萍. 双层石墨烯层间限域CO氧化反应的密度泛函研究.  , 2019, 68(21): 218101. doi: 10.7498/aps.68.20190447
    [8] 张晓波, 青芳竹, 李雪松. 化学气相沉积石墨烯薄膜的洁净转移.  , 2019, 68(9): 096801. doi: 10.7498/aps.68.20190279
    [9] 林奎鑫, 李多生, 叶寅, 江五贵, 叶志国, Qinghua Qin, 邹伟. 扭转双层石墨烯物理性质、制备方法及其应用的研究进展.  , 2018, 67(24): 246802. doi: 10.7498/aps.67.20181432
    [10] 杨云畅, 武斌, 刘云圻. 双层石墨烯的化学气相沉积法制备及其光电器件.  , 2017, 66(21): 218101. doi: 10.7498/aps.66.218101
    [11] 王彬, 冯雅辉, 王秋实, 张伟, 张丽娜, 马晋文, 张浩然, 于广辉, 王桂强. 化学气相沉积法制备的石墨烯晶畴的氢气刻蚀.  , 2016, 65(9): 098101. doi: 10.7498/aps.65.098101
    [12] 李峰, 肖传云, 阚二军, 陆瑞锋, 邓开明. 钯和铂金属在石墨烯表面不同生长机理第一性原理研究.  , 2014, 63(17): 176802. doi: 10.7498/aps.63.176802
    [13] 韩林芷, 赵占霞, 马忠权. 化学气相沉积法制备大尺寸单晶石墨烯的工艺参数研究.  , 2014, 63(24): 248103. doi: 10.7498/aps.63.248103
    [14] 王浪, 冯伟, 杨连乔, 张建华. 化学气相沉积法制备石墨烯的铜衬底预处理研究.  , 2014, 63(17): 176801. doi: 10.7498/aps.63.176801
    [15] 何琼, 许向东, 温粤江, 蒋亚东, 敖天宏, 樊泰君, 黄龙, 马春前, 孙自强. 溶胶凝胶制备氧化钒薄膜的生长机理及光电特性.  , 2013, 62(5): 056802. doi: 10.7498/aps.62.056802
    [16] 王文荣, 周玉修, 李铁, 王跃林, 谢晓明. 高质量大面积石墨烯的化学气相沉积制备方法研究.  , 2012, 61(3): 038702. doi: 10.7498/aps.61.038702
    [17] 贾曦, 刘爱萍, 刘洋溢, 唐为华, 王君伟. SnO2微纳米材料的合成及其生长机理研究.  , 2009, 58(4): 2572-2577. doi: 10.7498/aps.58.2572
    [18] 张永炬, 余森江, 葛洪良, 邬良能, 崔玉建. 硅油基底表面铁薄膜的生长机理及表面有序结构.  , 2006, 55(10): 5444-5450. doi: 10.7498/aps.55.5444
    [19] 丁 佩, 梁二军, 张红瑞, 刘一真, 刘 慧, 郭新勇, 杜祖亮. “锥形嵌套"结构CNx纳米管的生长机理及拉曼光谱研究.  , 2003, 52(1): 237-241. doi: 10.7498/aps.52.237
    [20] 胡颖. 微波等离子体化学气相沉积方法在Si衬底上生长SiC纳米线.  , 2001, 50(12): 2452-2455. doi: 10.7498/aps.50.2452
计量
  • 文章访问数:  7130
  • PDF下载量:  393
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-03
  • 修回日期:  2016-11-10
  • 刊出日期:  2017-03-05

/

返回文章
返回
Baidu
map