搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中国夏冬季近极端温度变化异常事件的空间分布特征

钱忠华 曹春红 封国林

引用本文:
Citation:

中国夏冬季近极端温度变化异常事件的空间分布特征

钱忠华, 曹春红, 封国林

Spatial distribution characteristics of nearly extremely anomalous temperature events in summer and winter in China

Qian Zhong-Hua, Cao Chun-Hong, Feng Guo-Lin
PDF
导出引用
  • 基于近极值事件广义态密度估计方法,针对1961-2013年中国近极端温度异常变化事件构建了近极值广义态密度的参数,定义rp为近极端温度变化异常事件最概然强度,max为近极端温度变化异常事件最大聚集程度,研究了1961-2013年中国近极端温度异常变化事件的聚集特征.结果表明:夏季,西北地区西部、华南地区以及西南地区南部,当日最高温度变化量达到离高温正距平阈值1.0-2.8℃并达到44%的聚集程度时,应及时给出极端高温异常增温事件的预警信息;在华南地区、西南地区南部以及西藏地区,当出现日最高温度变化量高于高温负距平阈值0.5-2.5℃的近极端高温异常降温事件并达到34%的聚集程度时,下一时刻出现极端高温异常降温事件的概率最大.冬季,对于西南地区,当日最低温度变化量达到离低温正距平阈值1.0-2.0℃并达到32%的聚集程度时,下一时刻最有可能发生极端低温异常增温事件;西南地区,华南地区和江南地区当日最低温度变化比低温负距平阈值高1.0-4.0℃时近极端低温异常降温事件会聚集发生.因此近极端温度变化异常事件最概然强度rp和近极端温度变化异常事件最大聚集程度max在一定程度上给出了下一刻极端温度异常变化事件的预警信息.
    The events near their extreme values are termed nearly extreme events. The generalized density of states is proposed that is defined by a probability density function. The rate of nearly-extreme events to the total sample size at a given point is the crowding of nearly extreme events, which is an important index used in many fields. Based on the estimation of the generalized state density of nearly extreme events, the parameters of the generalized state density of nearly-extreme anomalous temperature events are constructed with the temperature daily maximum data in summer and daily minimum data recorded in China in winter in 1961-2013. The daily maximum and minimum temperatures recorded at 174 observed stations in 1961-2013 are selected based on the requirement of data continuity from the climate dataset over China, released by the China Meteorological Administration. According to the analysis of the single station Nanjing, the maximum probability density of occurrence about nearly extremely anomalous temperature is marked as max and the corresponding r of max is marked as rp, which indicates that when the difference between nearly extremely anomalous events and extremely anomalous events is rp, the probability of occurrence is maximum. Then rp is defined as the most probable intensity of nearly extremely anomalous temperature events. max and rp can show the crowding degree characteristics about nearly extremely anomalous temperature events and can carry significant physical meanings in the practical application. So the spatial distribution characteristics of max and rp about nearly extremely anomalous temperature events in China in summer and winter are analyzed respectively. In summer, in the west part of Northwest China, South China and south part of Southwest China easily happen the extremely warming events when the most probable intensity of nearly extremely warming temperature event rp values are 1.0℃ and 2.8℃ and the maximum probability density of occurrence about nearly extremely warming temperature max is up to 44%. In South China, south part of Southwest China and Xizang easily occur the extremely cooling events when the most probable intensity of nearly extremely cooling temperature event rp values are 0.5℃ and 2.5℃ and the maximum probability density of occurrence about nearly extremely cooling temperature max is up to 34%. In winter, the warning information about extremely warming events should give to Southwest China when the most probable intensity of nearly extremely warming temperature events rp values are 1℃ and 2℃ and the maximum probability density of occurrence about nearly extremely warming temperature max is up to 32%. The warning information about extremely cooling events should give to Southwest China, South China and south part of the Yangtze River when the most probable intensity of nearly extremely cooling temperature events rp are 1.0℃ and 4.0℃. Therefore, the maximum probability density of occurrence max and the most probable intensity rp of nearly extremely anomalous temperature events can give some early warning information about the coming extremely anomalous temperature events.
      通信作者: 封国林, qianzh@yzu.edu.cn
    • 基金项目: 国家重点基础研究发展计划(批准号:2012CB955902,2013CB430204)和国家自然科学基金(批准号:41675050,41530531)资助的课题.
      Corresponding author: Feng Guo-Lin, qianzh@yzu.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant Nos.2012CB955902,2013CB430204) and the National Natural Science Foundation of China (Grant Nos.41675050,41530531).
    [1]

    Houghton J T, Ding Y, Griggs D J 2007Contribution of Working Group I to the Third Assessment Report of the Intergovemmental Panel Climate Change (Cambridge:Cambridge University Press) p156

    [2]

    Wei F Y, Cao H X, Wang L P 2003J. Appl. Meteo. Sci. 14 79(in Chinese)[魏凤英, 曹鸿兴, 王丽萍2003应用气象学报14 79]

    [3]

    Gong Z Q, Zhao J H, Feng G L, Chou J F 2015Sci. China:Ear. Sci. 58 404

    [4]

    Gong Z Q, Feng G L, Ren F M, Li J P 2013Theor. Appl. Climatol. 7 1

    [5]

    Qian Z H, Hou W, Yang P, Feng G L 2011Acta Phys. Sin. 60 109204(in Chinese)[钱忠华, 侯威, 杨萍, 封国林2011 60 109204]

    [6]

    Gong Z Q, Wang X J, Zhi R, Feng G L 2009Acta Phys. Sin. 58 4342(in Chinese)[龚志强, 王晓娟, 支蓉, 封国林2009 58 4342]

    [7]

    Redner S, Petersen M R 2006Phys. Rev. E 74 061114

    [8]

    Coles S 2001An Introduction to Statistical Modeling of Extreme Values (London:Springer-Verlag) pp45-72

    [9]

    Katz R W, Parlange M B, Naveau P 2002Adv. Water Res. 25 1287

    [10]

    Piani C, Haerter J O, Coppola E 2010Theor. Appl. Climatol. 99 187

    [11]

    Pakes A G, Steutel F W 1997Aust. J. Stat. 13 255

    [12]

    Katz R W, Brown B G 1992Clim. Change 21 289

    [13]

    Sabhapandit S, Majumdar S N 2007Phys. Rev. Lett. 98 4055

    [14]

    Burkhardt T W, Gyrgyi G, Moloney N R, Rcz Z 2007Phys. Rev. E 76 041119

    [15]

    Buchholz D, Wichmann E H 1986Commun. Math. Phys. 106 321

    [16]

    Lin J G, Huang C, Zhuang Q Y, Zhu L P 2010Insur. Math. Econ. 47 13

    [17]

    Yan Z W, Yang C 2000Climat. Environ. Res. 5 267(in Chinese)[严中伟, 杨赤2000气候与环境研究5 267]

    [18]

    Pan X H, Zhai P M 2002Meteorol. Month. 28 28(in Chinese)[潘晓华, 翟盘茂2002气象28 28]

    [19]

    Wang H J, Zhou G Q, Zhao Y 2000J. Appl. Meteor. Sci. 11 40(in Chinese)[王会军, 周广庆, 赵彦2000应用气象学报11 40]

    [20]

    Shi L, Ni Y Q 2001Acta Meteor. Sin. 59 685(in Chinese)[史历, 倪允琪2001气象学报59 685]

    [21]

    Liu W W, An S Q, Liu G S, Guo A H 2003Meteorol. Month. 29 14(in Chinese)[刘巍巍, 安顺清, 刘庚山, 郭安红2003气象29 14]

    [22]

    Tang M C, Zhang J, Wang J X 1987Plat. Meteorol. 6 150(in Chinese)[汤懋苍, 张建, 王敬香1987高原气象6 150]

    [23]

    Bonsal B R, Zhang X B, Vincent L A 2001J. Clim. 14 1959

    [24]

    Wang Z C 2008Statistic and Thermodynamic Physics (4th Ed.) (Beijing:China Higher Education Press) p256(in Chinese)[汪志诚2008热力学统计物理(第4版) (北京:高等教育出版社)第256页]

  • [1]

    Houghton J T, Ding Y, Griggs D J 2007Contribution of Working Group I to the Third Assessment Report of the Intergovemmental Panel Climate Change (Cambridge:Cambridge University Press) p156

    [2]

    Wei F Y, Cao H X, Wang L P 2003J. Appl. Meteo. Sci. 14 79(in Chinese)[魏凤英, 曹鸿兴, 王丽萍2003应用气象学报14 79]

    [3]

    Gong Z Q, Zhao J H, Feng G L, Chou J F 2015Sci. China:Ear. Sci. 58 404

    [4]

    Gong Z Q, Feng G L, Ren F M, Li J P 2013Theor. Appl. Climatol. 7 1

    [5]

    Qian Z H, Hou W, Yang P, Feng G L 2011Acta Phys. Sin. 60 109204(in Chinese)[钱忠华, 侯威, 杨萍, 封国林2011 60 109204]

    [6]

    Gong Z Q, Wang X J, Zhi R, Feng G L 2009Acta Phys. Sin. 58 4342(in Chinese)[龚志强, 王晓娟, 支蓉, 封国林2009 58 4342]

    [7]

    Redner S, Petersen M R 2006Phys. Rev. E 74 061114

    [8]

    Coles S 2001An Introduction to Statistical Modeling of Extreme Values (London:Springer-Verlag) pp45-72

    [9]

    Katz R W, Parlange M B, Naveau P 2002Adv. Water Res. 25 1287

    [10]

    Piani C, Haerter J O, Coppola E 2010Theor. Appl. Climatol. 99 187

    [11]

    Pakes A G, Steutel F W 1997Aust. J. Stat. 13 255

    [12]

    Katz R W, Brown B G 1992Clim. Change 21 289

    [13]

    Sabhapandit S, Majumdar S N 2007Phys. Rev. Lett. 98 4055

    [14]

    Burkhardt T W, Gyrgyi G, Moloney N R, Rcz Z 2007Phys. Rev. E 76 041119

    [15]

    Buchholz D, Wichmann E H 1986Commun. Math. Phys. 106 321

    [16]

    Lin J G, Huang C, Zhuang Q Y, Zhu L P 2010Insur. Math. Econ. 47 13

    [17]

    Yan Z W, Yang C 2000Climat. Environ. Res. 5 267(in Chinese)[严中伟, 杨赤2000气候与环境研究5 267]

    [18]

    Pan X H, Zhai P M 2002Meteorol. Month. 28 28(in Chinese)[潘晓华, 翟盘茂2002气象28 28]

    [19]

    Wang H J, Zhou G Q, Zhao Y 2000J. Appl. Meteor. Sci. 11 40(in Chinese)[王会军, 周广庆, 赵彦2000应用气象学报11 40]

    [20]

    Shi L, Ni Y Q 2001Acta Meteor. Sin. 59 685(in Chinese)[史历, 倪允琪2001气象学报59 685]

    [21]

    Liu W W, An S Q, Liu G S, Guo A H 2003Meteorol. Month. 29 14(in Chinese)[刘巍巍, 安顺清, 刘庚山, 郭安红2003气象29 14]

    [22]

    Tang M C, Zhang J, Wang J X 1987Plat. Meteorol. 6 150(in Chinese)[汤懋苍, 张建, 王敬香1987高原气象6 150]

    [23]

    Bonsal B R, Zhang X B, Vincent L A 2001J. Clim. 14 1959

    [24]

    Wang Z C 2008Statistic and Thermodynamic Physics (4th Ed.) (Beijing:China Higher Education Press) p256(in Chinese)[汪志诚2008热力学统计物理(第4版) (北京:高等教育出版社)第256页]

  • [1] 郭力仁, 胡以华, 王云鹏, 徐世龙. 基于最大似然的单通道交叠激光微多普勒信号参数分离估计.  , 2018, 67(11): 114202. doi: 10.7498/aps.67.20172639
    [2] 任子良, 秦勇, 黄锦旺, 赵智, 冯久超. 基于广义似然比判决的混沌信号重构方法.  , 2017, 66(4): 040503. doi: 10.7498/aps.66.040503
    [3] 吴晓庆, 田启国, 金鑫淼, 姜鹏, 青春, 蔡俊, 周宏岩. 常规气象参数估算南极泰山站近地面大气光学湍流强度.  , 2017, 66(3): 039201. doi: 10.7498/aps.66.039201
    [4] 黄茂静, 包芸. 湍流热对流近底板流态与温度边界层特性.  , 2016, 65(20): 204702. doi: 10.7498/aps.65.204702
    [5] 齐月, 房世波, 周文佐. 近50年来中国东、西部地面太阳辐射变化及其与大气环境变化的关系.  , 2015, 64(8): 089201. doi: 10.7498/aps.64.089201
    [6] 徐斌, 贺华, 杨晓艳, 别业广, 吕清花. 西藏地区近地晴天大气电场气象效应和时间变化研究.  , 2012, 61(17): 175203. doi: 10.7498/aps.61.175203
    [7] 吴浩, 侯威, 钱忠华, 胡经国. 基于气候变化综合指数的中国近50年来气候变化敏感性研究.  , 2012, 61(14): 149205. doi: 10.7498/aps.61.149205
    [8] 马金玉, 梁宏, 罗勇, 李世奎. 中国近50年太阳直接辐射和散射辐射变化趋势特征.  , 2011, 60(6): 069601. doi: 10.7498/aps.60.069601
    [9] 赵俊虎, 封国林, 张世轩, 孙树鹏. 近48年中国的季节变化与极端温度事件的联系.  , 2011, 60(9): 099205. doi: 10.7498/aps.60.099205
    [10] 钱忠华, 侯威, 杨萍, 封国林. 最概然温度背景下不同气候态中国夏冬季极端温度事件时空分布特征.  , 2011, 60(10): 109204. doi: 10.7498/aps.60.109204
    [11] 章大全, 张璐, 杨杰, 封国林. 近50年中国降水及温度变化在干旱形成中的影响.  , 2010, 59(1): 655-663. doi: 10.7498/aps.59.655
    [12] 钱忠华, 封国林, 龚志强. 中国夏冬两季最概然温度分布及其增温趋势减缓.  , 2010, 59(10): 7498-7507. doi: 10.7498/aps.59.7498
    [13] 龚志强, 王晓娟, 支蓉, 封国林. 中国近58年温度极端事件的区域特征及其与气候突变的联系.  , 2009, 58(6): 4342-4353. doi: 10.7498/aps.58.4342
    [14] 章大全, 钱忠华. 利用中值检测方法研究近50年中国极端气温变化趋势.  , 2008, 57(7): 4634-4640. doi: 10.7498/aps.57.4634
    [15] 袁 玲, 沈中华, 倪晓武, 陆 建. 激光在近表面弹性性质梯度变化的材料中激发超声波的数值分析.  , 2007, 56(12): 7058-7063. doi: 10.7498/aps.56.7058
    [16] 张 文, 高新全, 董文杰, 李建平. 利用高阶矩检测近2000年来气候极端异常的研究.  , 2006, 55(5): 2657-2662. doi: 10.7498/aps.55.2657
    [17] 凤任飞, 武淑兰, 刘颖辉, 暨青, 徐克尊. 氩原子近LⅡ,Ⅲ边结构和振子强度密度.  , 1997, 46(10): 1901-1905. doi: 10.7498/aps.46.1901
    [18] 李林森. 引力辐射阻尼对双星轨道要素变化的影响——对过近星点时刻的影响.  , 1994, 43(5): 694-698. doi: 10.7498/aps.43.694
    [19] 刘磊, 李家明. 原子体系近核区电子波函数振幅(Ⅱ)——离化态原子近核区电子波函数振幅.  , 1991, 40(12): 1929-1933. doi: 10.7498/aps.40.1929
    [20] 田伯刚, 李家明. 广义振子强度密度.  , 1984, 33(10): 1401-1407. doi: 10.7498/aps.33.1401
计量
  • 文章访问数:  5660
  • PDF下载量:  221
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-04
  • 修回日期:  2016-11-21
  • 刊出日期:  2017-02-05

/

返回文章
返回
Baidu
map