搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

反馈控制棘轮的定向输运效率研究

范黎明 吕明涛 黄仁忠 高天附 郑志刚

引用本文:
Citation:

反馈控制棘轮的定向输运效率研究

范黎明, 吕明涛, 黄仁忠, 高天附, 郑志刚

Investigation on the directed transport efficiency of feedback-control ratchet

Fan Li-Ming, Lü Ming-Tao, Huang Ren-Zhong, Gao Tian-Fu, Zheng Zhi-Gang
PDF
导出引用
  • 研究了反馈耦合布朗棘轮中粒子处于负载力、时变外力及噪声作用下的定向输运问题.详细讨论了外力作用时间的不对称性、外势空间的不对称性及外力周期等对反馈耦合棘轮中粒子输运效率的影响.研究发现,外力的时间不对称度能促进反馈棘轮中粒子的定向输运,随时间不对称度的增大,反馈棘轮中粒子能获得较大的效率.然而,外势空间的不对称度能有效抑制耦合棘轮中粒子的扩散,达到增强耦合粒子定向输运的效果.同时还发现,存在最优的噪声强度能使耦合粒子的输运效率达到最大.
    Brownian motion in the environment of the thermal fluctuations is a long-study issue in nonequilibrium statistical physics. In recent years, the directed transport properties of Brownian ratchets attract the widespread attention of scholars. When a ratchet system possesses the spatio-temporal symmetry-breaking feature, the directed transport can be produced. Although the breakthrough progress in the directed transport of the Brownian ratchet has been made, the energy conversion efficiency of feedback ratchet is not clear. Therefore, the center-of-mass mean velocity and the energy conversion efficiency of coupled ratchet under the influences of the time asymmetry of external force and the spatial asymmetry of external potential are discussed in detail. The overdamped coupled Brownian particles are investigated. Nevertheless, the optimized control of the coupled ratchet is the important for directed transport. Therefore, the closed-loop control which depends on the state of the system is adopted. The dynamic behavior of coupled particles can be described by the overdamped Langevin equation, and the equation is numerically solved by using the stochastic Runge-Kutta algorithm. Some properties of the directed transport can be obtained through this method, such as the center-of-mass mean velocity, the energy conversion efficiency, etc. It is interesting to find that the center-of-mass mean velocity can reach a maximum as the amplitude of external force increases. However, the mean velocity can show the quasi-periodic oscillations with the increase of the period of external force for different values of the spatial asymmetry of external potential. In addition, it can be found that the feedback ratchet needs strong noise to make the directed transport of the ratchet reach the maximum as the coupled strength increases. On the other hand, the energy conversion efficiencies of the feedback ratchet can achieve their corresponding maximum values with the increase of the amplitude of external force for different values of the time asymmetry, and the maximum increases as the time asymmetry increases. However, the efficiency can also show the quasi-periodic oscillations with the increase of the period of the external force for different values of the spatial asymmetry of external potential. Moreover, the energy conversion efficiency can achieve the maximum as the noise strength increases, but the maximum of the efficiency will decrease with the increase of coupling strength. From the discussion above, the optimal values of the time asymmetry, the spatial asymmetry, the period of the external force and the noise strength can promote the directed transport of the feedback coupled Brownian ratchet. These conclusions can provide some guidance in the enhancement of the energy conversion efficiency of a nanomachine.
      通信作者: 高天附, tianfugao@synu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11475022,11347003)、华侨大学科研启动费项目和沈阳师范大学优秀人才支持计划(批准号:91400114005)资助的课题.
      Corresponding author: Gao Tian-Fu, tianfugao@synu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China(Grand Nos. 11475022, 11347003) and the Scientific Research Funds of Huaqiao University and the Excellent Talents Program of Shenyang Normal University, China(Grand No. 91400114005).
    [1]

    Mateos J L 2000 Phys. Rev. Lett. 84 258

    [2]

    Barbi M, Salerno M 2000 Phys. Rev. E 62 1988

    [3]

    Sumithra K, Sintes T 2009 Rev. Mod. Phy. 81 387

    [4]

    Zheng Z G 2004 Spantiotemporal Dynamics and Collective Behaviors in Coupled Nonlinear System(1st Ed.)(Beijing:Higher Education Press) pp278-340(in Chinese)[郑志刚2004耦合非线性动力系统的时空动力学与合作行为(第一版)(北京:高等教育出版社)第278–340页]

    [5]

    Machura L, Kostur M, Luczka J 2010 Chem. Phys. 375 445

    [6]

    Mielke A 2000 Phys. Rev. Lett. 84 818

    [7]

    Doering C R 1995 Nuovo Cimento 17 685

    [8]

    Jlicher F, Ajdari A, Prost J 1997 Rev. Mod. Phys. 69 1269

    [9]

    Astumian R D, Bier M 1994 Phys. Rev. Lett. 72 1766

    [10]

    Xie P 2002 Phys. Rep. 361 57

    [11]

    Rozenbaum V M, Yang D Y, Lin S H, Tsong T Y 2006 Physica A 363 211

    [12]

    Wang H Y, Bao J D 2003 Physica A 323 197

    [13]

    Linke H 2002 Appl. Phys. A:Mater. Sci. Process. 75 167

    [14]

    van den Heuvel M G L, Dekker C 2007 Science 317 333

    [15]

    Braun O M, Kivshar Y S 1998 Phys. Rep. 306 1

    [16]

    Landa P S, McClintock P V E 2000 Phys. Rep. 323 1

    [17]

    Ai B Q, He Y F, Zhong W R 2011 Phys. Rev. E 83 051106

    [18]

    Li C P, Han Y R, Zhan Y, Hu J J, Zhang L G, Qu J 2011 Mod. Phys. Lett. B 25 1179

    [19]

    Downton M T, Zuchermann M J, Craig E M, Plischke M, Linke H 2006 Phys. Rev. E 73 011909

    [20]

    Wang H Y, Bao J D 2007 Physica A 374 33

    [21]

    Feito M, Cao F J 2006 Phys. Rev. E 74 041109

    [22]

    Feito M, Cao F J 2007 Eur. Phys. J. B 59 63

    [23]

    Feito M, Cao F J 2007 Phys. Rev. E 76 061113

    [24]

    Feito M, Cao F J 2008 Physica A 387 4553

    [25]

    Gao T F, Chen J C 2009 J. Phys. A:Math. Theor. 42 065002

    [26]

    Rousselet J, Salome L, Ajdari A, Prost J 1994 Nature 370 446

    [27]

    Bier M 2007 Biosystems 88 301

    [28]

    Zhang H W, Wen S T, Chen G R, Li Y X, Cao Z X, Li W 2012 Chin. Phys. B 21 038701

    [29]

    Bustamante C, Chemla Y R, Forde N R, Izhaky D 2004 Annu. Rev. Biochem. 73 705

    [30]

    Cao F J, Feito M, Touchette H 2009 Physica A 388 113

    [31]

    Wang L F, Gao T F, Huang R Z, Zheng Y X 2013 Acta. Phys. Sin. 62 070502 (in Chinese)[王莉芳, 高天附, 黄仁忠, 郑玉祥2013 62 070502]

    [32]

    Qin T Q, Wang F, Yang B, Luo M K 2015 Acta Phys. Sin. 64 120501 (in Chinese)[秦天齐, 王飞, 杨博, 罗懋康2015 64 120501]

    [33]

    Wang H Y, Bao J D 2005 Physica A 357 373

    [34]

    Zhao A K 2007 M. S. Dissertation(Zhengzhou:Zhengzhou University)(in Chinese)[赵阿可2007硕士学位论文(郑州:郑州大学)]

    [35]

    Derényi I, Astumian R D 1999 Phys. Rev. E 59 R6219

    [36]

    Bao J D 2012 An Introduction to Anomalous Statisticl Dynamics (1st Ed.)(Beijing:Science Press) pp127-184(in Chinese)[包景东2012反常统计动力学导论第一版(北京:科学出版社)第127–184页]

    [37]

    Li G, Tu Z C 2016 Sci. China:Phys. Mech. Astron. 59 640501

    [38]

    Zheng Z G, Cross M C, Hu G 2002 Phys. Rev. Lett. 89 154102

  • [1]

    Mateos J L 2000 Phys. Rev. Lett. 84 258

    [2]

    Barbi M, Salerno M 2000 Phys. Rev. E 62 1988

    [3]

    Sumithra K, Sintes T 2009 Rev. Mod. Phy. 81 387

    [4]

    Zheng Z G 2004 Spantiotemporal Dynamics and Collective Behaviors in Coupled Nonlinear System(1st Ed.)(Beijing:Higher Education Press) pp278-340(in Chinese)[郑志刚2004耦合非线性动力系统的时空动力学与合作行为(第一版)(北京:高等教育出版社)第278–340页]

    [5]

    Machura L, Kostur M, Luczka J 2010 Chem. Phys. 375 445

    [6]

    Mielke A 2000 Phys. Rev. Lett. 84 818

    [7]

    Doering C R 1995 Nuovo Cimento 17 685

    [8]

    Jlicher F, Ajdari A, Prost J 1997 Rev. Mod. Phys. 69 1269

    [9]

    Astumian R D, Bier M 1994 Phys. Rev. Lett. 72 1766

    [10]

    Xie P 2002 Phys. Rep. 361 57

    [11]

    Rozenbaum V M, Yang D Y, Lin S H, Tsong T Y 2006 Physica A 363 211

    [12]

    Wang H Y, Bao J D 2003 Physica A 323 197

    [13]

    Linke H 2002 Appl. Phys. A:Mater. Sci. Process. 75 167

    [14]

    van den Heuvel M G L, Dekker C 2007 Science 317 333

    [15]

    Braun O M, Kivshar Y S 1998 Phys. Rep. 306 1

    [16]

    Landa P S, McClintock P V E 2000 Phys. Rep. 323 1

    [17]

    Ai B Q, He Y F, Zhong W R 2011 Phys. Rev. E 83 051106

    [18]

    Li C P, Han Y R, Zhan Y, Hu J J, Zhang L G, Qu J 2011 Mod. Phys. Lett. B 25 1179

    [19]

    Downton M T, Zuchermann M J, Craig E M, Plischke M, Linke H 2006 Phys. Rev. E 73 011909

    [20]

    Wang H Y, Bao J D 2007 Physica A 374 33

    [21]

    Feito M, Cao F J 2006 Phys. Rev. E 74 041109

    [22]

    Feito M, Cao F J 2007 Eur. Phys. J. B 59 63

    [23]

    Feito M, Cao F J 2007 Phys. Rev. E 76 061113

    [24]

    Feito M, Cao F J 2008 Physica A 387 4553

    [25]

    Gao T F, Chen J C 2009 J. Phys. A:Math. Theor. 42 065002

    [26]

    Rousselet J, Salome L, Ajdari A, Prost J 1994 Nature 370 446

    [27]

    Bier M 2007 Biosystems 88 301

    [28]

    Zhang H W, Wen S T, Chen G R, Li Y X, Cao Z X, Li W 2012 Chin. Phys. B 21 038701

    [29]

    Bustamante C, Chemla Y R, Forde N R, Izhaky D 2004 Annu. Rev. Biochem. 73 705

    [30]

    Cao F J, Feito M, Touchette H 2009 Physica A 388 113

    [31]

    Wang L F, Gao T F, Huang R Z, Zheng Y X 2013 Acta. Phys. Sin. 62 070502 (in Chinese)[王莉芳, 高天附, 黄仁忠, 郑玉祥2013 62 070502]

    [32]

    Qin T Q, Wang F, Yang B, Luo M K 2015 Acta Phys. Sin. 64 120501 (in Chinese)[秦天齐, 王飞, 杨博, 罗懋康2015 64 120501]

    [33]

    Wang H Y, Bao J D 2005 Physica A 357 373

    [34]

    Zhao A K 2007 M. S. Dissertation(Zhengzhou:Zhengzhou University)(in Chinese)[赵阿可2007硕士学位论文(郑州:郑州大学)]

    [35]

    Derényi I, Astumian R D 1999 Phys. Rev. E 59 R6219

    [36]

    Bao J D 2012 An Introduction to Anomalous Statisticl Dynamics (1st Ed.)(Beijing:Science Press) pp127-184(in Chinese)[包景东2012反常统计动力学导论第一版(北京:科学出版社)第127–184页]

    [37]

    Li G, Tu Z C 2016 Sci. China:Phys. Mech. Astron. 59 640501

    [38]

    Zheng Z G, Cross M C, Hu G 2002 Phys. Rev. Lett. 89 154102

  • [1] 刘天宇, 曹佳慧, 刘艳艳, 高天附, 郑志刚. 温度反馈控制棘轮的最优控制.  , 2021, 70(19): 190501. doi: 10.7498/aps.70.20210517
    [2] 曹佳慧, 刘艳艳, 艾保全, 黄仁忠, 高天附. 空间非均匀摩擦棘轮的输运性能.  , 2021, 70(23): 230201. doi: 10.7498/aps.70.20210802
    [3] 延明月, 张旭, 刘晨昊, 黄仁忠, 高天附, 郑志刚. 反馈脉冲棘轮的能量转化效率研究.  , 2018, 67(19): 190501. doi: 10.7498/aps.67.20181066
    [4] 谢天婷, 邓科, 罗懋康. 二维非对称周期时移波状通道中的粒子定向输运问题.  , 2016, 65(15): 150501. doi: 10.7498/aps.65.150501
    [5] 吴魏霞, 宋艳丽, 韩英荣. 二维耦合定向输运模型研究.  , 2015, 64(15): 150501. doi: 10.7498/aps.64.150501
    [6] 任芮彬, 刘德浩, 王传毅, 罗懋康. 时间非对称外力驱动分数阶布朗马达的定向输运.  , 2015, 64(9): 090505. doi: 10.7498/aps.64.090505
    [7] 秦天奇, 王飞, 杨博, 罗懋康. 带反馈的分数阶耦合布朗马达的定向输运.  , 2015, 64(12): 120501. doi: 10.7498/aps.64.120501
    [8] 周兴旺, 林丽烽, 马洪, 罗懋康. 时间非对称分数阶类Langevin棘齿.  , 2014, 63(11): 110501. doi: 10.7498/aps.63.110501
    [9] 王飞, 谢天婷, 邓翠, 罗懋康. 系统非对称性及记忆性对布朗马达输运行为的影响.  , 2014, 63(16): 160502. doi: 10.7498/aps.63.160502
    [10] 屠浙, 赖莉, 罗懋康. 分数阶非对称耦合系统在对称周期势中的定向输运.  , 2014, 63(12): 120503. doi: 10.7498/aps.63.120503
    [11] 曾喆昭. 不确定混沌系统的径向基函数神经网络反馈补偿控制.  , 2013, 62(3): 030504. doi: 10.7498/aps.62.030504
    [12] 吴魏霞, 郑志刚. 二维势场中弹性耦合粒子的定向输运研究.  , 2013, 62(19): 190511. doi: 10.7498/aps.62.190511
    [13] 白文斯密, 彭皓, 屠浙, 马洪. 分数阶Brown马达及其定向输运现象.  , 2012, 61(21): 210501. doi: 10.7498/aps.61.210501
    [14] 史正平. 简易混沌振荡器的混沌特性及其反馈控制电路的设计.  , 2010, 59(9): 5940-5948. doi: 10.7498/aps.59.5940
    [15] 尹小舟, 刘 勇. 非连续反馈控制激发介质中的螺旋波.  , 2008, 57(11): 6844-6851. doi: 10.7498/aps.57.6844
    [16] 林 敏, 黄咏梅, 方利民. 双稳系统随机共振的反馈控制.  , 2008, 57(4): 2041-2047. doi: 10.7498/aps.57.2041
    [17] 都 琳, 徐 伟, 贾飞蕾, 李 爽. 基于低通滤波函数实现陀螺系统的反馈控制.  , 2007, 56(7): 3813-3819. doi: 10.7498/aps.56.3813
    [18] 陈 漩, 高自友, 赵小梅, 贾 斌. 反馈控制双车道跟驰模型研究.  , 2007, 56(4): 2024-2029. doi: 10.7498/aps.56.2024
    [19] 刘素华, 唐驾时. Langford系统Hopf分叉的线性反馈控制.  , 2007, 56(6): 3145-3151. doi: 10.7498/aps.56.3145
    [20] 于津江, 张明轩, 徐海波. 对称混沌系统的非线性动力学行为及控制.  , 2004, 53(11): 3701-3705. doi: 10.7498/aps.53.3701
计量
  • 文章访问数:  6029
  • PDF下载量:  214
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-07
  • 修回日期:  2016-09-30
  • 刊出日期:  2017-01-05

/

返回文章
返回
Baidu
map