搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

弱测量对四个量子比特量子态的保护

黄江

引用本文:
Citation:

弱测量对四个量子比特量子态的保护

黄江

The protection of qudit states by weak measurement

Huang Jiang
PDF
导出引用
  • 廖湘萍等(Chin.Phys.B 23 020304,2014)指出弱测量和弱测量反转操作可以保护三个量子比特的纠缠,提高保真度.本文将弱测量方法推广至四个量子比特的情况,研究了几种典型四个量子比特量子态的演化.结果表明:在振幅阻尼通道中,弱测量方法能够有效地提高系统量子态的保真度.分析了影响量子态保真度的各种因素,对比了不同量子态的演化特征,划分了量子态保真度提高的敏感区域.最后,对弱测量方法抑制量子态衰减的内在机制做了合理的物理解释.
    Liao Xiang-Ping et al.(Chin. Phys. B 23 020304, 2014) pointed out that the method of weak measurement and quantum weak measurement reversal can protect entanglement and improve the fidelity of three-qubit quantum state. We generalize the method of weak measurement to the case of qudit state in this paper. By using the operation of weak measurement and quantum weak measurement reversal, we investigate the evolution dynamics of fidelity and fidelity improvement for qudit state under amplitude damping decoherence. We compare two kinds of operations: one is to let the input qudit state cross the amplitude damping decoherence directly, and the other one is that we first make a weak measurement operation on the input qudit state, then through the amplitude damping decoherence, finally an operation of quantum weak measurement reversal is done with the output qudit state. We discuss the GHZ state, W state, CL state and some special separable states exactly and obtain the analytic expressions of fidelity and fidelity improvement for qudit state before and after the weak measurement and quantum weak measurement reversal operation. According to the analytic expressions we plot the evolution curves against its corresponding parameters. The effects of corresponding parameters are discussed and a susceptible protection region of the qudit state is also given in the context. The results show that the structure of qudit state is the determined factor to the effect of weak measurement and quantum weak measurement reversal. There are some different effects on the different structured qudit states. For entangled state, the fidelity of qudit GHZ state can be protected in a relatively big evolution region, most part of the fidelity improvement is in the upper part of the zero reference plane. While the fidelity of qudit W state can be improved effectively in the whole evolution region, which is a perfect protection. The evolution regulations of qudit CL state and Dick state are between evolution regulations of the GHZ state and W state. When we input some special separable qudit states which have similar structures to W state, their fidelity and fidelity improvement are almost the same as W state’s. It is demonstrated that the structure of qudit state is important for the weak measurement in a step. This work is meaningful for the quantum information process.
      通信作者: 黄江, 940038299@qq.com
    • 基金项目: 广东省自然科学基金(批准号:2015A030310354)和广东海洋大学优秀青年骨干教师基金资助的课题.
      Corresponding author: Huang Jiang, 940038299@qq.com
    • Funds: Project supported by the natural science foundation of Guangdong province(Grant No. 2015A030310354), and the Foundation of Excellent-Young-Backbone Teacher of Guangdong Ocean University, China.
    [1]

    Zhou S X 2002 Quantum Dynamics(Beijing:Higher Education Press) pp17-25(in Chinese)[周世勋2002量子力学(北京:高等教育出版社)第17–25页]

    [2]

    Einstein A, Podolsky B, Rosen N 1935 Phys. Rev. 47 777

    [3]

    Nielsen M A, Chuang I L 2002 Quantum Computation and Quantum Informatin(Cambridge:Cambridge University Press) pp74-89

    [4]

    Zeng H F, Shao B, Yang L G, Li J, Zou J 2008 Chin. Phys. B 18 3265

    [5]

    Sun G H, Aoki M A, Dong S H 2013 Chin. Phys. B 22 050302

    [6]

    Yu T, Eberly J H 2007 arXiv preprint arXiv:0707.3215

    [7]

    Zhang R, Qin H, Tang B, Xue P 2013 Chin. Phys. B 22 100301

    [8]

    Mazhar A, Alber G, Rau A R P 2009 J. Phys. B 42 025501

    [9]

    Mazhar A, Guhne O 2014 J. Phys. B 47 055503

    [10]

    Yu T, Eberly J H 2003 Phys. Rev. Lett. 97 140403

    [11]

    Simon C, Kempe J 2002 Phys. Rev. A 65 052327

    [12]

    López C E, Römero G, Lastra F, Solano E, Reamal J C 2008 Phys. Rev. Lett. 101 080503

    [13]

    Yu T, Eberly J H 2002 Phys. Rev. B 66 193306

    [14]

    Yu T, Eberly J H 2003 Phys. Rev. B 68 165322

    [15]

    Yu T, Eberly J H 2004 Phys. Rev. Lett. 93 140404

    [16]

    Yang B Y, Fang M F, Huang J 2013 Chin. Phys. B 22 080303

    [17]

    Pan J W, Gasparoni S, Ursin R, Weihs G, Zeilinger A 2003 Nature Phys. 423 1014

    [18]

    Xiao X, Fang M F, Li Y L, Zeng K, Wu C 2009 J. Phys. B:At. Mol. Opt. Phys. 42 235502

    [19]

    Huang J, Guo Y N, Xie Q 2016 Chin. Phys. B 25 0203032

    [20]

    Zou H M, Fang M F 2016 Chin. Phys. B 25 090302

    [21]

    Fan Z L, Ren Y K, Zeng H S 2016 Chin. Phys. B 25 010303

    [22]

    Han W, Jiang K X, Zhang Y J, Xia Y J 2015 Chin. Phys. B 24 120304

    [23]

    Mazhar A 2015 Chin. Phys. B 24 1203035

    [24]

    Mazhar A, Huang J 2014 Chin. Phys. Lett. 31 110301

    [25]

    Wang Z L, Wang Z, Fan H Y 2015 Chin. Phys. B 24 1203016

    [26]

    Yang Y B, Wang W G 2015 Chin. Phys. Lett. 32 030301

    [27]

    Shan C J, Xia Y J 2006 Acta Phys. Sin. 55 1585 (in Chinese)[单传家, 夏云杰2006 55 1585]

    [28]

    Zou Q, Hu X M, Liu J M 2015 Acta Phys. Sin. 64 080302 (in Chinese)[邹琴, 胡小勉, 刘金明2015 64 080302]

    [29]

    Korotkov A N 1999 Phys. Rev. B 60 5737

    [30]

    Katz N, Neeley M, Ansmann M, Radoslaw C B, Hofheinz M, Lucero E, Connell A, Wang H, Cleland A N, Martinis J M, Korotkov A N 2008 Phys. Rev. Lett. 101 200401

    [31]

    Korotkov A N, Jordan A N 2006 Phys. Rev. Lett. 97 166805

    [32]

    Kim Y S, Cho Y W, Ra Y S, Kim Y H 2009 Opt. Express 17 11978

    [33]

    Lee J C, Jeong Y C, Kim Y S, Kim Y H 2011 Opt. Express 19 16309

    [34]

    Xu X Y, Kedem Y, Sun K, Vaidman L, Li C F, Guo G C 2013 Phys. Rev. Lett. 111 033604

    [35]

    Katz N, Ansmann M, Bialczak R C, Lucero E, Mcdermott R, Neeley M, Steffen M, Weig E M, Cleland A N, Martinis J M, Korotkov A N 2006 Science 312 1498

    [36]

    Groen J P, Riste D, Tornberg L, CRömer J, Degroot P C, Picot T, Johansson G, Dicarlo L 2013 Phys. Rev. Lett. 111 090506

    [37]

    Korotkov A N, Keane K 2010 Phys. Rev. A 81 040103

    [38]

    Wang S C, Yu Z W, Wang X B 2014 Phys. Rev. A 89 022318

    [39]

    Sun Q Q, Amri M A, Zubairy M S 2009 Phys. Rev. A 80 033838

    [40]

    Kim Y S, Lee J C, Kwon O, Kim Y H 2012 Nature Phys. 8 117

    [41]

    Xiao X, Li Y L 2013 Eur. Phys. J. D 67 204

    [42]

    Liao X P, Fang M F, Fang J S, Zhu Q Q 2014 Chin. Phys. B 23 020304

    [43]

    Schumacher B W 1996 Phys. Rev. A 54 2614

    [44]

    Song X L, Yang M 2016 Acta Phys. Sin. 65 080303 (in Chinese)[宗晓岚, 杨名2016 65 080303]

    [45]

    Xiao X, Feng M 2011 Phys. Rev. A 83 054301

    [46]

    Jungnitsch B, Moroder T, Guhne O 2011 Phys. Rev. Lett. 106 190502

  • [1]

    Zhou S X 2002 Quantum Dynamics(Beijing:Higher Education Press) pp17-25(in Chinese)[周世勋2002量子力学(北京:高等教育出版社)第17–25页]

    [2]

    Einstein A, Podolsky B, Rosen N 1935 Phys. Rev. 47 777

    [3]

    Nielsen M A, Chuang I L 2002 Quantum Computation and Quantum Informatin(Cambridge:Cambridge University Press) pp74-89

    [4]

    Zeng H F, Shao B, Yang L G, Li J, Zou J 2008 Chin. Phys. B 18 3265

    [5]

    Sun G H, Aoki M A, Dong S H 2013 Chin. Phys. B 22 050302

    [6]

    Yu T, Eberly J H 2007 arXiv preprint arXiv:0707.3215

    [7]

    Zhang R, Qin H, Tang B, Xue P 2013 Chin. Phys. B 22 100301

    [8]

    Mazhar A, Alber G, Rau A R P 2009 J. Phys. B 42 025501

    [9]

    Mazhar A, Guhne O 2014 J. Phys. B 47 055503

    [10]

    Yu T, Eberly J H 2003 Phys. Rev. Lett. 97 140403

    [11]

    Simon C, Kempe J 2002 Phys. Rev. A 65 052327

    [12]

    López C E, Römero G, Lastra F, Solano E, Reamal J C 2008 Phys. Rev. Lett. 101 080503

    [13]

    Yu T, Eberly J H 2002 Phys. Rev. B 66 193306

    [14]

    Yu T, Eberly J H 2003 Phys. Rev. B 68 165322

    [15]

    Yu T, Eberly J H 2004 Phys. Rev. Lett. 93 140404

    [16]

    Yang B Y, Fang M F, Huang J 2013 Chin. Phys. B 22 080303

    [17]

    Pan J W, Gasparoni S, Ursin R, Weihs G, Zeilinger A 2003 Nature Phys. 423 1014

    [18]

    Xiao X, Fang M F, Li Y L, Zeng K, Wu C 2009 J. Phys. B:At. Mol. Opt. Phys. 42 235502

    [19]

    Huang J, Guo Y N, Xie Q 2016 Chin. Phys. B 25 0203032

    [20]

    Zou H M, Fang M F 2016 Chin. Phys. B 25 090302

    [21]

    Fan Z L, Ren Y K, Zeng H S 2016 Chin. Phys. B 25 010303

    [22]

    Han W, Jiang K X, Zhang Y J, Xia Y J 2015 Chin. Phys. B 24 120304

    [23]

    Mazhar A 2015 Chin. Phys. B 24 1203035

    [24]

    Mazhar A, Huang J 2014 Chin. Phys. Lett. 31 110301

    [25]

    Wang Z L, Wang Z, Fan H Y 2015 Chin. Phys. B 24 1203016

    [26]

    Yang Y B, Wang W G 2015 Chin. Phys. Lett. 32 030301

    [27]

    Shan C J, Xia Y J 2006 Acta Phys. Sin. 55 1585 (in Chinese)[单传家, 夏云杰2006 55 1585]

    [28]

    Zou Q, Hu X M, Liu J M 2015 Acta Phys. Sin. 64 080302 (in Chinese)[邹琴, 胡小勉, 刘金明2015 64 080302]

    [29]

    Korotkov A N 1999 Phys. Rev. B 60 5737

    [30]

    Katz N, Neeley M, Ansmann M, Radoslaw C B, Hofheinz M, Lucero E, Connell A, Wang H, Cleland A N, Martinis J M, Korotkov A N 2008 Phys. Rev. Lett. 101 200401

    [31]

    Korotkov A N, Jordan A N 2006 Phys. Rev. Lett. 97 166805

    [32]

    Kim Y S, Cho Y W, Ra Y S, Kim Y H 2009 Opt. Express 17 11978

    [33]

    Lee J C, Jeong Y C, Kim Y S, Kim Y H 2011 Opt. Express 19 16309

    [34]

    Xu X Y, Kedem Y, Sun K, Vaidman L, Li C F, Guo G C 2013 Phys. Rev. Lett. 111 033604

    [35]

    Katz N, Ansmann M, Bialczak R C, Lucero E, Mcdermott R, Neeley M, Steffen M, Weig E M, Cleland A N, Martinis J M, Korotkov A N 2006 Science 312 1498

    [36]

    Groen J P, Riste D, Tornberg L, CRömer J, Degroot P C, Picot T, Johansson G, Dicarlo L 2013 Phys. Rev. Lett. 111 090506

    [37]

    Korotkov A N, Keane K 2010 Phys. Rev. A 81 040103

    [38]

    Wang S C, Yu Z W, Wang X B 2014 Phys. Rev. A 89 022318

    [39]

    Sun Q Q, Amri M A, Zubairy M S 2009 Phys. Rev. A 80 033838

    [40]

    Kim Y S, Lee J C, Kwon O, Kim Y H 2012 Nature Phys. 8 117

    [41]

    Xiao X, Li Y L 2013 Eur. Phys. J. D 67 204

    [42]

    Liao X P, Fang M F, Fang J S, Zhu Q Q 2014 Chin. Phys. B 23 020304

    [43]

    Schumacher B W 1996 Phys. Rev. A 54 2614

    [44]

    Song X L, Yang M 2016 Acta Phys. Sin. 65 080303 (in Chinese)[宗晓岚, 杨名2016 65 080303]

    [45]

    Xiao X, Feng M 2011 Phys. Rev. A 83 054301

    [46]

    Jungnitsch B, Moroder T, Guhne O 2011 Phys. Rev. Lett. 106 190502

  • [1] 蒋世民, 贾欣燕, 樊代和. 非马尔科夫环境中Werner态的量子非局域关联检验研究.  , 2024, 73(16): 160301. doi: 10.7498/aps.73.20240450
    [2] 熊凡, 陈永聪, 敖平. 热噪声环境下偶极场驱动的量子比特动力学.  , 2023, 72(17): 170302. doi: 10.7498/aps.72.20230625
    [3] 曾柏云, 辜鹏宇, 蒋世民, 贾欣燕, 樊代和. Markov环境下“X”态基于CHSH不等式的量子非局域关联检验.  , 2023, 72(5): 050301. doi: 10.7498/aps.72.20222218
    [4] 张骄阳, 丛爽, 王驰, SajedeHarraz. 借助弱测量和环境辅助测量的N量子比特状态退相干抑制.  , 2022, 71(22): 220303. doi: 10.7498/aps.71.20220760
    [5] 胡强, 曾柏云, 辜鹏宇, 贾欣燕, 樊代和. 退相干条件下两比特纠缠态的量子非局域关联检验.  , 2022, 71(7): 070301. doi: 10.7498/aps.71.20211453
    [6] 宋悦, 李军奇, 梁九卿. 级联环境下三量子比特量子关联动力学研究.  , 2021, 70(10): 100301. doi: 10.7498/aps.70.20202133
    [7] 张晓东, 於亚飞, 张智明. 量子弱测量中纠缠对参数估计精度的影响.  , 2021, 70(24): 240302. doi: 10.7498/aps.70.20210796
    [8] 武莹, 李锦芳, 刘金明. 基于部分测量增强量子隐形传态过程的量子Fisher信息.  , 2018, 67(14): 140304. doi: 10.7498/aps.67.20180330
    [9] 贾芳, 刘寸金, 胡银泉, 范洪义. 量子隐形传态保真度的新公式及应用.  , 2016, 65(22): 220302. doi: 10.7498/aps.65.220302
    [10] 王美姣, 夏云杰. 在有限温度下运用弱测量保护量子纠缠.  , 2015, 64(24): 240303. doi: 10.7498/aps.64.240303
    [11] 杨光, 廉保旺, 聂敏. 振幅阻尼信道量子隐形传态保真度恢复机理.  , 2015, 64(1): 010303. doi: 10.7498/aps.64.010303
    [12] 秦猛, 李延标, 白忠, 王晓. 不同方向Dzyaloshinskii-Moriya相互作用和磁场对自旋系统纠缠和保真度退相干的影响.  , 2014, 63(11): 110302. doi: 10.7498/aps.63.110302
    [13] 聂敏, 张琳, 刘晓慧. 量子纠缠信令网Poisson生存模型及保真度分析.  , 2013, 62(23): 230303. doi: 10.7498/aps.62.230303
    [14] 赵建辉. 应用约化密度保真度确定自旋为1的一维量子 Blume-Capel模型的基态相图.  , 2012, 61(22): 220501. doi: 10.7498/aps.61.220501
    [15] 吕菁芬, 马善钧. 光子扣除(增加)压缩真空态与压缩猫态的保真度.  , 2011, 60(8): 080301. doi: 10.7498/aps.60.080301
    [16] 潘长宁, 方见树, 彭小芳, 廖湘萍, 方卯发. 耗散系统中实现原子态量子隐形传态的保真度.  , 2011, 60(9): 090303. doi: 10.7498/aps.60.090303
    [17] 叶 宾, 谷瑞军, 须文波. 周期驱动的Harper模型的量子计算鲁棒性与量子混沌.  , 2007, 56(7): 3709-3718. doi: 10.7498/aps.56.3709
    [18] 李艳玲, 冯 健, 孟祥国, 梁宝龙. 量子比特的普适远程翻转和克隆.  , 2007, 56(10): 5591-5596. doi: 10.7498/aps.56.5591
    [19] 夏云杰, 王光辉, 杜少将. 双模最小关联混合态作为量子信道实现量子隐形传态的保真度.  , 2007, 56(8): 4331-4336. doi: 10.7498/aps.56.4331
    [20] 张登玉, 郭 萍, 高 峰. 强热辐射环境中两能级原子量子态保真度.  , 2007, 56(4): 1906-1910. doi: 10.7498/aps.56.1906
计量
  • 文章访问数:  7052
  • PDF下载量:  384
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-11
  • 修回日期:  2016-09-14
  • 刊出日期:  2017-01-05

/

返回文章
返回
Baidu
map