搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双自旋过滤隧道结中的隧穿时间

曾绍龙 李玲 谢征微

引用本文:
Citation:

双自旋过滤隧道结中的隧穿时间

曾绍龙, 李玲, 谢征微

Tunneling times in double spin-filter junctions

Zeng Shao-Long, Li Ling, Xie Zheng-Wei
PDF
导出引用
  • 基于自由电子近似和Winful的隧穿时间模型,研究了普通金属/自旋过滤层/非磁绝缘层/自旋过滤层/普通金属(NM/SF/I/SF/NM)双自旋过滤隧道结中自旋相关的居留时间(dwell time)和相位时间(phase time).分别以居留时间和相位时间随入射电子能量、势垒高度和势垒宽度、以及分子场大小的变化情况做了讨论.计算结果表明:在低能隧穿区域(入射电子的能量小于势垒高度),由于自旋相关的自相干项的影响,不同自旋方向电子的相位时间总是大于居留时间;在高能隧穿区域(入射电子的能量大于势垒高度),自旋相关的自相干项的影响减小,不同自旋方向电子的相位时间和于居留时间趋于一致.NM/SF/I/SF/NM双自旋过滤隧道结中的居留时间和相位时间基本不受非磁绝缘层势垒高度和宽度变化的影响,该现象不同于常规的铁磁金属/非磁绝缘层/铁磁金属(FM/I/FM)隧道结.但当非磁绝缘层势垒高度低于自旋过滤层势垒高度时,改变非磁绝缘层的势垒高度和宽度会使居留时间和相位时间出现相峰值,该峰值的出现与不同自旋方向电子的共振隧穿有关.自旋过滤层的势垒高度的变化对NM/SF/I/SF/NM双自旋过滤隧道结中的居留时间和相位时间影响大,但宽度变化的影响较小.自旋过滤层中分子场的变化对不同自旋方向的电子的居留时间和相位时间有明显影响,且上自旋电子的居留时间和相位时间随分子场的增大而减少,而下自旋电子的情况刚好相反.
    Based on the free electronic model and Winful's theory about tunneling times, the dwell times and the phase times in NM/SF/I/SF/NM double spin filter junctions are investigated, where the NM denotes the normal metal, SF the insulator barrier with spin filter effects and I the nonmagnetic insulator barrier. There are three different cases which are analyzed in detail:1) the dependences of dwell time and phase time on the energy of the incident electron; 2) the dependences of dwell time and phase time on the heights of the barrier; 3) the dependences of dwell time and phase time on the width of the barrier and the molecular field in the spin filter layer. The numerical results show that for the first case, when the electrons have low incident energy (smaller than the barrier height), as the influence of the spin-dependent self-interfere term, the phase times are always larger than the dwell times for electrons with different spinorientations. But when the electrons have high incident energy (higher than the barrier heights), the influence of the self-interfere term disappears and the differences between the phase time and dwell time for electrons with different spin orientations disappear also. For case 2, the numerical results show that the variation of nonmagnetic insulator barrier height has little influence on the dwell time and phase time in NM/SF/I/SF/NM double spin filter junctions. But when the nonmagnetic insulator barrier height is lower than the barrier height of spin filter layer, the quantum well will appear and the resonant tunneling can be induced to lead to the peaks in the dependences of dwell and phase times on the insulator barrier height. The variation of spin-filter barrier height has obvious influence on the dwell time and phase time in NM/SF/I/SF/NM double spin filter junction. With increasing the height of spin-filter barrier, the dwell times and phase time both first increase and then decrease. For case 3, the influences of the widths of the nonmagnetic insulator barrier layer and spin filter layer on the dwell time and phase time are little. But when the barrier height of nonmagnetic insulator barrier is lower than that of spin-filter layer, the variation of width of insulator barrier can lead to the resonant tunneling and the peaks in dwell and phase times. Unlike the influence of width of barrier, the influences of molecular field in the spin filter layer on the dwell time and phase time are obvious. For the up-spin electrons, dwell time and phase time decrease with increasing the molecular fields, which is contrary to the scenario for the down-spin electrons.
      通信作者: 谢征微, zzwxie@aliyun.com
    • 基金项目: 四川省教育厅自然科学基金重点项目(批准号:13ZA0149,16ZA0047),四川高校科研创新团队建设计划资助(批准号:12TD008)资助的课题.
      Corresponding author: Xie Zheng-Wei, zzwxie@aliyun.com
    • Funds: Project supported by the Sichuan Province Education Department Key Natural Science Fund, China (Grant Nos:13ZA0149, 16ZA0047), and Construction Plan for Scientific Research Innovation Team of Universities in Sichuan Province, China (Grant No. 12TD008).
    [1]

    Moodera J S, Santos T S, Nagahama T 2007J. Phys.:Condens. Matter 19 165202

    [2]

    Meservey R, Tedrow P M 1994Phys. Rep. 238 173

    [3]

    Saffarzadeh A 2004J. Magn. Magn. Mater. 269 327

    [4]

    Nagahana T, Santos T S, Moodera J S 2009Phys. Rev. Lett. 99 016602

    [5]

    Jin D F, Ren Y, Li Z Z, Xiao M W, Jin G J, Hu A 2006Phys. Rev. B 73 012414

    [6]

    He P B, Liu W M 2005Phys. Rev. B 72 064410

    [7]

    Li Y, Li B Z, Zhang W S, Dai D S 1998Phys. Rev. B 57 1079

    [8]

    Worledge D C, Geballe T H 2000J. Appl. Phys. 88 5277

    [9]

    Miao G X, Mller M, Moodera J S 2009Phys. Rev. Lett. 102 076601

    [10]

    Miao G X, Chang J Y, Assaf Badih A, Donald H 2014Nat. Comms. 5 3682

    [11]

    Miao G X, Moodera J S 2012Phys. Rev. B 85 144424

    [12]

    Lders U, Bibes M, Fusil S, Bouzehouane K, Jacquet E, Sommers C B, Contour J P, Bobo J F, Barthélémy A, Fert A, Levy P M 2007Phys. Rev. B 76 134412

    [13]

    Lders U, Barthélémy A, Bibes M, Bouzehouane K, Fusil S, Jacquet E, Contour J P, Bobo J F, Fontcuberta J, Fert A 2006Adv. Mat. 18 1733

    [14]

    Condon E U, Morse P M 1931Rev. Mod. Phys. 3 43

    [15]

    Wigner E P 1955Phys. Rev. 98 145

    [16]

    Smith F T 1960Phys. Rev. 118 349

    [17]

    Bttiker M 1983Phys. Rev. B 27 6178

    [18]

    Bttiker M, Landauer R 1982Phys. Rev. Lett. 49 1739

    [19]

    Landauer R, Martin Th 1994Rev. Mod. Phys. 66 217

    [20]

    Winful H G 2003Phys. Rev. Lett. 91 260401

    [21]

    Guo Y, Shang C E, Chen X Y 2005Phys. Rev. B 72 045356

    [22]

    Wang B, Guo Y, Gu B L 2002J. Appl. Phys. 91 1318

    [23]

    Wu H C, Guo Y, Chen X Y, Gu B L 2003J. Appl. Phys. 93 5316

    [24]

    Zhang Y T, Li Y C 2006J. Appl. Phys. 99 013907

    [25]

    Du J, Zhang P, Liu J H, Li J L, Li Y X 2008Acta Phys. Sin. 57 7221(in Chinese)[杜坚, 张鹏, 刘继红, 李金亮, 李玉现2008 57 7221]

    [26]

    Slonczewski J C 1989Phys. Rev. B 39 6995

  • [1]

    Moodera J S, Santos T S, Nagahama T 2007J. Phys.:Condens. Matter 19 165202

    [2]

    Meservey R, Tedrow P M 1994Phys. Rep. 238 173

    [3]

    Saffarzadeh A 2004J. Magn. Magn. Mater. 269 327

    [4]

    Nagahana T, Santos T S, Moodera J S 2009Phys. Rev. Lett. 99 016602

    [5]

    Jin D F, Ren Y, Li Z Z, Xiao M W, Jin G J, Hu A 2006Phys. Rev. B 73 012414

    [6]

    He P B, Liu W M 2005Phys. Rev. B 72 064410

    [7]

    Li Y, Li B Z, Zhang W S, Dai D S 1998Phys. Rev. B 57 1079

    [8]

    Worledge D C, Geballe T H 2000J. Appl. Phys. 88 5277

    [9]

    Miao G X, Mller M, Moodera J S 2009Phys. Rev. Lett. 102 076601

    [10]

    Miao G X, Chang J Y, Assaf Badih A, Donald H 2014Nat. Comms. 5 3682

    [11]

    Miao G X, Moodera J S 2012Phys. Rev. B 85 144424

    [12]

    Lders U, Bibes M, Fusil S, Bouzehouane K, Jacquet E, Sommers C B, Contour J P, Bobo J F, Barthélémy A, Fert A, Levy P M 2007Phys. Rev. B 76 134412

    [13]

    Lders U, Barthélémy A, Bibes M, Bouzehouane K, Fusil S, Jacquet E, Contour J P, Bobo J F, Fontcuberta J, Fert A 2006Adv. Mat. 18 1733

    [14]

    Condon E U, Morse P M 1931Rev. Mod. Phys. 3 43

    [15]

    Wigner E P 1955Phys. Rev. 98 145

    [16]

    Smith F T 1960Phys. Rev. 118 349

    [17]

    Bttiker M 1983Phys. Rev. B 27 6178

    [18]

    Bttiker M, Landauer R 1982Phys. Rev. Lett. 49 1739

    [19]

    Landauer R, Martin Th 1994Rev. Mod. Phys. 66 217

    [20]

    Winful H G 2003Phys. Rev. Lett. 91 260401

    [21]

    Guo Y, Shang C E, Chen X Y 2005Phys. Rev. B 72 045356

    [22]

    Wang B, Guo Y, Gu B L 2002J. Appl. Phys. 91 1318

    [23]

    Wu H C, Guo Y, Chen X Y, Gu B L 2003J. Appl. Phys. 93 5316

    [24]

    Zhang Y T, Li Y C 2006J. Appl. Phys. 99 013907

    [25]

    Du J, Zhang P, Liu J H, Li J L, Li Y X 2008Acta Phys. Sin. 57 7221(in Chinese)[杜坚, 张鹏, 刘继红, 李金亮, 李玉现2008 57 7221]

    [26]

    Slonczewski J C 1989Phys. Rev. B 39 6995

  • [1] 夏永顺, 杨晓阔, 豆树清, 崔焕卿, 危波, 梁卜嘉, 闫旭. 基于磁性隧道结和双组分多铁纳磁体的超低功耗磁弹模数转换器.  , 2024, 73(13): 137502. doi: 10.7498/aps.73.20240129
    [2] 温丽, 卢卯旺, 陈嘉丽, 陈赛艳, 曹雪丽, 张安琪. 电子在自旋-轨道耦合调制下磁受限半导体纳米结构中的传输时间及其自旋极化.  , 2024, 73(11): 118504. doi: 10.7498/aps.73.20240285
    [3] 丰家峰, 陈星, 魏红祥, 陈鹏, 兰贵彬, 刘要稳, 郭经红, 黄辉, 韩秀峰. 自由层磁性交换偏置效应调控隧穿磁电阻磁传感单元性能.  , 2023, 72(19): 197103. doi: 10.7498/aps.72.20231003
    [4] 张亚君, 蔡佳林, 乔亚, 曾中明, 袁喆, 夏钶. 基于磁性隧道结的群体编码实现无监督聚类.  , 2022, 71(14): 148506. doi: 10.7498/aps.71.20220252
    [5] 吕杰, 方贺男, 吕涛涛, 孙星宇. MgO基磁性隧道结温度-偏压相图的理论研究.  , 2021, 70(10): 107302. doi: 10.7498/aps.70.20201905
    [6] 杨维, 韩江朝, 曹元, 林晓阳, 赵巍胜. Fe3GeTe2/h-BN/石墨烯二维异质结器件中的高效率自旋注入.  , 2021, 70(12): 129101. doi: 10.7498/aps.70.20202136
    [7] 相阳, 郑军, 李春雷, 郭永. 局域交换场和电场调控的锗烯纳米带自旋过滤效应.  , 2019, 68(18): 187302. doi: 10.7498/aps.68.20190817
    [8] 邓小清, 孙琳, 李春先. 界面铁掺杂锯齿形石墨烯纳米带的自旋输运性能.  , 2016, 65(6): 068503. doi: 10.7498/aps.65.068503
    [9] 朱朕, 李春先, 张振华. 功能化扶手椅型石墨烯纳米带异质结的磁器件特性.  , 2016, 65(11): 118501. doi: 10.7498/aps.65.118501
    [10] 黄政, 龙超云, 周勋, 徐明. 双势垒抛物势阱磁性隧道结隧穿磁阻及自旋输运性质的研究.  , 2016, 65(15): 157301. doi: 10.7498/aps.65.157301
    [11] 黎明, 陈军, 宫箭. InAs/InP柱型量子线中隧穿时间和逃逸问题的研究.  , 2014, 63(23): 237303. doi: 10.7498/aps.63.237303
    [12] 刘德, 张红梅, 贾秀敏. 对称抛物势阱磁性隧道结中的自旋输运及磁电阻效应.  , 2011, 60(1): 017506. doi: 10.7498/aps.60.017506
    [13] 彭子龙, 韩秀峰, 赵素芬, 魏红祥, 杜关祥, 詹文山. 磁随机存储器中垂直电流驱动的磁性隧道结自由层的磁化翻转.  , 2006, 55(2): 860-864. doi: 10.7498/aps.55.860
    [14] 冯玉清, 赵 昆, 朱 涛, 詹文山. 磁性隧道结热稳定性的x射线光电子能谱研究.  , 2005, 54(11): 5372-5376. doi: 10.7498/aps.54.5372
    [15] 冯玉清, 侯利娜, 朱 涛, 姚淑德, 詹文山. 具有纳米氧化层的磁性隧道结的热稳定性研究.  , 2005, 54(9): 4340-4344. doi: 10.7498/aps.54.4340
    [16] 李飞飞, 张谢群, 杜关祥, 王天兴, 曾中明, 魏红祥, 韩秀峰. 高磁电阻磁性隧道结的几种微制备方法研究.  , 2005, 54(8): 3831-3838. doi: 10.7498/aps.54.3831
    [17] 张 喆, 朱 涛, 冯玉清, 张 泽. Co基磁性隧道结势垒结构的电子全息研究.  , 2005, 54(12): 5861-5866. doi: 10.7498/aps.54.5861
    [18] 由 臣, 赵燕平, 金恩姬, 李飞飞, 王天兴, 曾中明, 彭子龙. 利用金属掩模法制备钉扎型磁性隧道结.  , 2004, 53(8): 2741-2745. doi: 10.7498/aps.53.2741
    [19] 王天兴, 魏红祥, 李飞飞, 张爱国, 曾中明, 詹文山, 韩秀峰. 4英寸热氧化硅衬底上磁性隧道结的微制备.  , 2004, 53(11): 3895-3901. doi: 10.7498/aps.53.3895
    [20] 谢征微, 李伯臧. 处理具有任意形状势垒的磁性隧道结中电子输运的一个简单方法.  , 2002, 51(2): 399-405. doi: 10.7498/aps.51.399
计量
  • 文章访问数:  6045
  • PDF下载量:  144
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-04
  • 修回日期:  2016-08-21
  • 刊出日期:  2016-11-05

/

返回文章
返回
Baidu
map