搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

嵌段共聚物受限于接枝混合刷板间的相行为

范文亮 孙敏娜 张进军 潘俊星 郭宇琦 李颖 李春蓉 王宝凤

引用本文:
Citation:

嵌段共聚物受限于接枝混合刷板间的相行为

范文亮, 孙敏娜, 张进军, 潘俊星, 郭宇琦, 李颖, 李春蓉, 王宝凤

Self-assembly diblock copolymers confined between mixed brush-grafted surfaces

Fan Wen-Liang, Sun Min-Na, Zhang Jin-Jun, Pan Jun-Xing, Guo Yu-Qi, Li Ying, Li Chun-Rong, Wang Bao-Feng
PDF
导出引用
  • 采用自洽场理论研究了AB两嵌段共聚物受限于交替接枝两种不同性质的聚合物刷平行板间的相行为.考虑了嵌段共聚物对称性、聚合物刷接枝周期、聚合物刷体积分数、平板间距以及AB嵌段间的相互作用参数对体系相形貌的影响,获得了四角柱状与六角柱状的交替相、四角柱状与八角柱状的交替相、平行的斜层状相以及弯层状相等结构;同时发现,接枝周期性混合刷有利于减少体系无序相的产生,并且较小周期的聚合物刷体系有利于六角柱状相的形成;在一定条件下,通过调节聚合物刷体积分数能够实现由水平层状到垂直层状的转变,这对纳米平板制造具有重要的意义;随着平板间距的减小,也获得了从水平层状到垂直层状的转变.本文所提出的调控共聚物结构的新方法以及获得的新颖结构,可对新型功能材料的设计提供一定的指导.
    The confined environment plays a very important role in the phase separation of copolymers, which can change bulk phase behaviors of copolymers. The different confinement conditions can induce the formations of various interesting and novel morphologies, which can be used in a variety of nanotechnology applications such as high-density medium storage, nanolithography and photonic crystals. The grafting of polymers to confined surfaces is an efficient means for tailoring surface properties. In this work, we investigate the effect on architecture of the AB diblock copolymer confined between mixed brush-grafted surfaces by using self-consistent field theory. The brush contains two types of homopolymers. We study the effects of the fraction of A block, grafted period and the volume fraction of the polymer brush, the distance between two surfaces and the interaction strength between two blocks on the morphology. 1) With the increase of the fraction of A block (fA), the phase morphology changes from the A-block hexagonal cylinder to the parallel lamellae, to the curving lamellae, and then to the B-block hexagonal cylinder. The period of hexagonal cylinder and curving lamellae is equal to the grafted period of the polymer brush due to the influence of the polymer brush. 2) The grafted period of polymer brush is a very important factor for the morphology of diblock copolymer. When fA=0.3, we change the grafted period of the polymer brush. We obtain the phase transition from the hexagonal cylinder to the alternating phase of tetragonal and hexagonal cylinder, then to the alternating phase of tetragonal and octagonal cylinder. When fA=0.4, the structure changes from the hexagonal cylinder to the order phase of the waving lamellae and cylinder with the increase of the grafted period of the polymer brush. Compared with the single homopolymer brush system, the mixed brush enlarges the range of ordered phase and reduces the range of disordered phase. Block copolymers are prone to forming cylinder in mixed brush system and tending to form lamellae in single homopolymer brush system. 3) When fA=0.3, we obtain the phase transition from the hexagonal cylinder to the one-layered cylinder phase by increasing the volume fraction of the polymer brush. This transition is different from that of the single homopolymer brush system. Interestingly, when fA=0.45, the structure of AB block copolymer changes from the parallel lamellae to the perpendicular lamellae with the increase of the volume fraction of the polymer brush. The entropic energy plays an important role in this transition process. Similarly, we also observe the phase transition from the parallel lamellae to the perpendicular lamellae by decrease the distance between two surfaces. 4) We construct the phase diagram for a range of the fraction of A block and the interaction strength. The results provide an effective approach to obtaining the desired microstructures for fabricating nanomaterials.
      通信作者: 孙敏娜, sunminna331@163.com;zhangjinjun@sxnu.edu.cn ; 张进军, sunminna331@163.com;zhangjinjun@sxnu.edu.cn
    • 基金项目: 山西省自然科学基金(批准号:2015011004)和山西省高等学校科技创新项目资助的课题.
      Corresponding author: Sun Min-Na, sunminna331@163.com;zhangjinjun@sxnu.edu.cn ; Zhang Jin-Jun, sunminna331@163.com;zhangjinjun@sxnu.edu.cn
    • Funds: Project Supported by the Provincial Natural Science Foundation of Shanxi Province, China (Grant No. 2015011004), and the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi Province, China.
    [1]

    Matsen M W 1998J. Chem. Phys. 108 785

    [2]

    Srinivas G, Discher D E, Klein M L 2004Nat. Mater. 3 638

    [3]

    Glass R, Moller M, Spatz J P 2003Nanotechnology 14 1153

    [4]

    Sun R G, Wang Y Z, Wang D K, Zheng Q B, Kyllo E M, Gustafson T L, Wang F S, Epstein A J 2000Synth. Met. 111 595

    [5]

    Yoon J, Lee W, Thomas E L 2006Nano Lett. 6 2211

    [6]

    Yoon J, Mathers R T, Coates G W, Thomas E L 2006Macromolecules 39 1913

    [7]

    Sheihet L, Piotrowska K, Dubin R A, Kohn J, Devore D 2007Biomacromolecules 8 998

    [8]

    Ding H M, Ma Y Q 2015Small 11 1055

    [9]

    Li W H, Mưller M 2015Annu. Rev. Chem. Biomol. Eng. 6 187

    [10]

    Li W H, Nealey P F, de Pablo J J, Mưller M 2014Phys. Rev. Lett. 113 168301

    [11]

    Kim S O, Kim B H, Kim K, Koo C M, Stoykovich M P, Nealey P F, Solak H H 2006Macromolecules 39 5466

    [12]

    Mishra V, Fredrickson G H, Kramer E J 2012ACS Nano 6 2629

    [13]

    Huinink H P, Brokken-Zijp J C M, van Dijk M A, Sevink G J A 2000J. Chem. Phys. 112 2452

    [14]

    Wang Q, Nealley P F, de Pablo J J 2001Macromolecules 34 3458

    [15]

    Pereira G G 2001Phys. Rev. E 63 061809

    [16]

    Matsen M W 2006Macromolecules 39 5512

    [17]

    Yang Y Z, Qiu F, Zhang H D, Yang Y L 2006Polymer 47 2205

    [18]

    Zhang T T, Deng H L, Yang T, Li W H 2015Polymer 65 168

    [19]

    Xu Y C, Li W H, Qiu F, Lin Z Q 2014Nanoscale 6 6844

    [20]

    Laachi N, Delaney K T, Kim B, Hur S M, Bristol R, Shykind D, Weinheimer C J, Fredrickson G H 2015Polym. Phys. 53 142

    [21]

    Peters B L, Rathsack B, Somervell M, Nakano T, Schmid G, de Pablo J J 2015Polym. Phys. 53 430

    [22]

    Shin K, Xiang H Q, Moon S I, Kim T, McCarthy T J, Russell T P 2004Science 306 76

    [23]

    Xiao X Q, Huang Y M, Liu H L, Hu Y 2007Macromol. Theor. Simul. 16 166

    [24]

    Xiang H Q, Shin K, Kim T, Moon S I, McCarthy T J, Russell T P 2005Macromolecules 38 1055

    [25]

    Li W H, Wickham R A, Garbary R A 2006Macromolecules 39 806

    [26]

    Yu B, Sun P C, Chen T H, Jin Q H, Ding D T, Li B H, Shi A C 2006Phys. Rev. Lett. 96 138306

    [27]

    Yu B, Deng J H, Li B H, Shi A C 2014Soft Matter 10 6831

    [28]

    Li L, Matsunaga K, Zhu J T, Higuchi T, Yabu H, Shimomura M, Jinnai H, Hayward R C, Russell T P 2010Macromolecules 43 7807

    [29]

    Cheng J Y, Ross C A, Smith H I, Thomas E L 2006Adv. Mater. 18 2505

    [30]

    Wu X F, Dzenis Y A 2006J. Chem. Phys. 125 174707

    [31]

    Petrus P, Lisal M, Brennan J K 2010Langmuir 26 14680

    [32]

    Tröndle M, Kondrat S, Gambassi A, Harnau L, Dietrich S 2010J. Chem. Phys. 133 074702

    [33]

    Shin D O, Kim B H, Kang J H, Jeong S J, Park S H, Lee Y H, Kim S O 2009Macromolecules 42 1189

    [34]

    Stoykovich M P, Daoulas K C, Mller M, Kang H, de Pablo J J, Nealey P F 2010Macromolecules 43 2334

    [35]

    Ren C L, Chen K, Ma Y Q 2005J. Chem. Phys. 122 154904

    [36]

    Ren C L, Ma Y Q 2005Phys. Rev. E72 051804

    [37]

    Jiang Z B, Wang R, Xue G 2009Chin. J. Polym. Sci. 27 583

    [38]

    Wang R, Zhang S N, Qiu Y D 2011Polymer 52 586

    [39]

    Jiang Z B, Xu C, Qiu Y D, Wang X L, Zhou D S, Xue G 2014Nanoscale. Res. Lett. 9 359

    [40]

    Curk T, Martinez-Veracoechea F J, Frenkel D, Dobnikar J 2014Nano Lett. 14 2617

    [41]

    Li M, Zhu Y J 2008Acta Phys. Sin. 57 7555(in Chinese)[李明, 诸跃进2008 57 7555]

    [42]

    Li Y, Sun M N, Zhang J J, Pan J X, Guo Y Q, Wang B F, Wu H S 2015Chin. Phys. B 24 126403

    [43]

    Bae D, Jeon G, Jinnai H, Huh J, Kim J K 2013Macromolecules 46 5301

    [44]

    Lee D, Kim M H, Bae D, Jeon G, Kim M, Kwak J, Park S J, Kim J U, Kim J K 2014Macromolecules 47 3997

    [45]

    Hur S M, Frischknecht A L, Huber D L, Fredrickson G H 2011Soft Matter 7 8776

    [46]

    Polotsky A A, Leermakers F A M, Birshtein T M 2015Macromolecules 48 2263

    [47]

    Drolet F, Fredrickson G H 1999Phys. Rev. Lett. 83 4317

    [48]

    Fredrickson G H, Ganesan V, Drolet F 2002Macromolecules 35 16

    [49]

    Li W H, Liu M J, Qiu F 2013J. Phys. Chem. B 117 5280

    [50]

    Matsen M W, Bates F S 1997J. Chem. Phys. 106 2436

    [51]

    Wu W K, Zhang L N, Liu S D, Ren H R, Zhou X Y, Li H 2016J. Am. Chem. Soc. 138 2815

    [52]

    He Y Z, Li X Y, Li H, Jiang Y Y, Bian X F 2014Nanoscale 6 4217

  • [1]

    Matsen M W 1998J. Chem. Phys. 108 785

    [2]

    Srinivas G, Discher D E, Klein M L 2004Nat. Mater. 3 638

    [3]

    Glass R, Moller M, Spatz J P 2003Nanotechnology 14 1153

    [4]

    Sun R G, Wang Y Z, Wang D K, Zheng Q B, Kyllo E M, Gustafson T L, Wang F S, Epstein A J 2000Synth. Met. 111 595

    [5]

    Yoon J, Lee W, Thomas E L 2006Nano Lett. 6 2211

    [6]

    Yoon J, Mathers R T, Coates G W, Thomas E L 2006Macromolecules 39 1913

    [7]

    Sheihet L, Piotrowska K, Dubin R A, Kohn J, Devore D 2007Biomacromolecules 8 998

    [8]

    Ding H M, Ma Y Q 2015Small 11 1055

    [9]

    Li W H, Mưller M 2015Annu. Rev. Chem. Biomol. Eng. 6 187

    [10]

    Li W H, Nealey P F, de Pablo J J, Mưller M 2014Phys. Rev. Lett. 113 168301

    [11]

    Kim S O, Kim B H, Kim K, Koo C M, Stoykovich M P, Nealey P F, Solak H H 2006Macromolecules 39 5466

    [12]

    Mishra V, Fredrickson G H, Kramer E J 2012ACS Nano 6 2629

    [13]

    Huinink H P, Brokken-Zijp J C M, van Dijk M A, Sevink G J A 2000J. Chem. Phys. 112 2452

    [14]

    Wang Q, Nealley P F, de Pablo J J 2001Macromolecules 34 3458

    [15]

    Pereira G G 2001Phys. Rev. E 63 061809

    [16]

    Matsen M W 2006Macromolecules 39 5512

    [17]

    Yang Y Z, Qiu F, Zhang H D, Yang Y L 2006Polymer 47 2205

    [18]

    Zhang T T, Deng H L, Yang T, Li W H 2015Polymer 65 168

    [19]

    Xu Y C, Li W H, Qiu F, Lin Z Q 2014Nanoscale 6 6844

    [20]

    Laachi N, Delaney K T, Kim B, Hur S M, Bristol R, Shykind D, Weinheimer C J, Fredrickson G H 2015Polym. Phys. 53 142

    [21]

    Peters B L, Rathsack B, Somervell M, Nakano T, Schmid G, de Pablo J J 2015Polym. Phys. 53 430

    [22]

    Shin K, Xiang H Q, Moon S I, Kim T, McCarthy T J, Russell T P 2004Science 306 76

    [23]

    Xiao X Q, Huang Y M, Liu H L, Hu Y 2007Macromol. Theor. Simul. 16 166

    [24]

    Xiang H Q, Shin K, Kim T, Moon S I, McCarthy T J, Russell T P 2005Macromolecules 38 1055

    [25]

    Li W H, Wickham R A, Garbary R A 2006Macromolecules 39 806

    [26]

    Yu B, Sun P C, Chen T H, Jin Q H, Ding D T, Li B H, Shi A C 2006Phys. Rev. Lett. 96 138306

    [27]

    Yu B, Deng J H, Li B H, Shi A C 2014Soft Matter 10 6831

    [28]

    Li L, Matsunaga K, Zhu J T, Higuchi T, Yabu H, Shimomura M, Jinnai H, Hayward R C, Russell T P 2010Macromolecules 43 7807

    [29]

    Cheng J Y, Ross C A, Smith H I, Thomas E L 2006Adv. Mater. 18 2505

    [30]

    Wu X F, Dzenis Y A 2006J. Chem. Phys. 125 174707

    [31]

    Petrus P, Lisal M, Brennan J K 2010Langmuir 26 14680

    [32]

    Tröndle M, Kondrat S, Gambassi A, Harnau L, Dietrich S 2010J. Chem. Phys. 133 074702

    [33]

    Shin D O, Kim B H, Kang J H, Jeong S J, Park S H, Lee Y H, Kim S O 2009Macromolecules 42 1189

    [34]

    Stoykovich M P, Daoulas K C, Mller M, Kang H, de Pablo J J, Nealey P F 2010Macromolecules 43 2334

    [35]

    Ren C L, Chen K, Ma Y Q 2005J. Chem. Phys. 122 154904

    [36]

    Ren C L, Ma Y Q 2005Phys. Rev. E72 051804

    [37]

    Jiang Z B, Wang R, Xue G 2009Chin. J. Polym. Sci. 27 583

    [38]

    Wang R, Zhang S N, Qiu Y D 2011Polymer 52 586

    [39]

    Jiang Z B, Xu C, Qiu Y D, Wang X L, Zhou D S, Xue G 2014Nanoscale. Res. Lett. 9 359

    [40]

    Curk T, Martinez-Veracoechea F J, Frenkel D, Dobnikar J 2014Nano Lett. 14 2617

    [41]

    Li M, Zhu Y J 2008Acta Phys. Sin. 57 7555(in Chinese)[李明, 诸跃进2008 57 7555]

    [42]

    Li Y, Sun M N, Zhang J J, Pan J X, Guo Y Q, Wang B F, Wu H S 2015Chin. Phys. B 24 126403

    [43]

    Bae D, Jeon G, Jinnai H, Huh J, Kim J K 2013Macromolecules 46 5301

    [44]

    Lee D, Kim M H, Bae D, Jeon G, Kim M, Kwak J, Park S J, Kim J U, Kim J K 2014Macromolecules 47 3997

    [45]

    Hur S M, Frischknecht A L, Huber D L, Fredrickson G H 2011Soft Matter 7 8776

    [46]

    Polotsky A A, Leermakers F A M, Birshtein T M 2015Macromolecules 48 2263

    [47]

    Drolet F, Fredrickson G H 1999Phys. Rev. Lett. 83 4317

    [48]

    Fredrickson G H, Ganesan V, Drolet F 2002Macromolecules 35 16

    [49]

    Li W H, Liu M J, Qiu F 2013J. Phys. Chem. B 117 5280

    [50]

    Matsen M W, Bates F S 1997J. Chem. Phys. 106 2436

    [51]

    Wu W K, Zhang L N, Liu S D, Ren H R, Zhou X Y, Li H 2016J. Am. Chem. Soc. 138 2815

    [52]

    He Y Z, Li X Y, Li H, Jiang Y Y, Bian X F 2014Nanoscale 6 4217

  • [1] 石子璇, 金燕, 金奕扬, 田文得, 张天辉, 陈康. 活性三嵌段共聚物的凝胶化转变.  , 2024, 73(17): 170501. doi: 10.7498/aps.73.20240796
    [2] 周丽丽, 胡欣悦, 穆中林, 张蕤, 郑悦. 任意方向电偶极子在水平分层受限空间中的远区辐射场求解.  , 2022, 71(20): 200301. doi: 10.7498/aps.71.20220545
    [3] 刘春杰, 赵新军, 高志福, 蒋中英. 高分子混合刷吸附/脱附蛋白质的模型化研究.  , 2021, 70(22): 224701. doi: 10.7498/aps.70.20211219
    [4] 张国峰, 李斌, 陈瑞云, 秦成兵, 高岩, 肖连团, 贾锁堂. 单分子光学探针揭示易混聚合物受限纳米区域的动力学.  , 2019, 68(14): 148201. doi: 10.7498/aps.68.20190423
    [5] 张红, 宗奕吾, 杨明成, 赵坤. 自驱动的Janus微球在具有不同障碍物的表面上的运动行为研究.  , 2019, 68(13): 134702. doi: 10.7498/aps.68.20190711
    [6] 梁琴, 陈征宇. 受限液晶系统的理论新进展.  , 2016, 65(17): 174201. doi: 10.7498/aps.65.174201
    [7] 吴晨旭, 严大东, 邢向军, 厚美瑛. 软物质主要理论综述.  , 2016, 65(18): 186102. doi: 10.7498/aps.65.186102
    [8] 樊娟娟, 于秀玲, 梁雪梅. AB/CD嵌段共聚物共混体系多尺度结构的自洽场模拟.  , 2013, 62(15): 158105. doi: 10.7498/aps.62.158105
    [9] 范冰冰, 王利娜, 温合静, 关莉, 王海龙, 张锐. 水分子链受限于单壁碳纳米管结构的密度泛函理论研究.  , 2011, 60(1): 012101. doi: 10.7498/aps.60.012101
    [10] 刘启能. 一维固-固结构圆柱声子晶体中弹性波的传输特性.  , 2011, 60(3): 034301. doi: 10.7498/aps.60.034301
    [11] 刘启能. 矩形掺杂光子晶体中电磁波的模式和缺陷模.  , 2010, 59(4): 2551-2555. doi: 10.7498/aps.59.2551
    [12] 李 明, 诸跃进. 嵌段共聚物受限于软孔内的自组装.  , 2008, 57(12): 7555-7564. doi: 10.7498/aps.57.7555
    [13] 王振宇, 唐昌建. 离子通道中环形束流分布与场解的自洽理论.  , 2007, 56(6): 3313-3317. doi: 10.7498/aps.56.3313
    [14] 郭坤琨, 邱 枫, 张红东, 杨玉良. 高分子锚定的流体膜.  , 2006, 55(1): 155-161. doi: 10.7498/aps.55.155
    [15] 蒋中英, 郁伟中, 夏元复. 三嵌段共聚物SEBS中自由体积行为的温度及e+辐照时间依赖性的研究.  , 2005, 54(7): 3434-3438. doi: 10.7498/aps.54.3434
    [16] 缪江平, 吴宗汉, 孙承休, 孙岳明. 表面等离极化激元对电荷输运影响的自洽场理论研究.  , 2004, 53(8): 2728-2733. doi: 10.7498/aps.53.2728
    [17] 刘德胜, 王鹿霞, 陈延学, 韩圣浩, 解士杰, 梅良模. PA和PPP三嵌段共聚物的带电态研究.  , 2001, 50(9): 1763-1768. doi: 10.7498/aps.50.1763
    [18] 孟续军, 宗晓萍, 白 云, 孙永盛, 张景琳. 混合物质原子结构的自洽场计算.  , 2000, 49(11): 2133-2138. doi: 10.7498/aps.49.2133
    [19] 李先枢. 光学无源谐振腔的矩阵理论(柱坐标)(Ⅰ)——自洽场矩阵方程.  , 1983, 32(8): 990-1001. doi: 10.7498/aps.32.990
    [20] 范海福, 韩福森. 起始相位的受限排列.  , 1981, 30(7): 921-927. doi: 10.7498/aps.30.921
计量
  • 文章访问数:  5555
  • PDF下载量:  148
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-12
  • 修回日期:  2016-08-23
  • 刊出日期:  2016-11-05

/

返回文章
返回
Baidu
map