搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

频域图像下的强场非序列电离过程

金发成 王兵兵

引用本文:
Citation:

频域图像下的强场非序列电离过程

金发成, 王兵兵

Frequency-domain view of nonsequential double ionization in intense laser fields

Jin Fa-Cheng, Wang Bing-Bing
PDF
导出引用
  • 自20世纪60年代激光发明以来,激光与物质的相互作用就一直成为物理学领域的一个重要研究方向.通过最近几十年激光技术的发展,大大拓展了激光的频率、强度及脉宽范围,使得复杂体系在激光场中的激发、辐射及电离过程得到更精细而深入的研究.本文总结了处理单色和双色激光场中双电子原子非序列电离的频域理论;归纳了碰撞-电离和碰撞-激发-电离两种机理下原子非序列电离在单色和双色激光场中的动量谱分布,并对动量谱上的干涉条纹利用量子通道相干的理论进行了分析;归纳了前向碰撞和背向碰撞在不同激光场条件下对非序列电离的不同贡献,以及高频激光场在非序列电离中所起的作用.
    The research of laser-matter interaction has become a major direction in the field of laser physics since the invention of laser in 1960. Based on the development of the laser technique in the recent several decades, the ranges of the laser's frequency, intensity and pulse width have been explored widely. Therefore, the excitation, emission and ionization dynamic processes of a complex system in intense laser fields have been studied deeply. Especially, the nonsequential double ionization (NSDI) process has continuously attracted much attention from both experimental and theoretical sides. So far, the recollision picture is widely accepted as a dominating mechanism accounting for the NSDI process under an infrared (IR) laser field condition. This recollision picture can be classified into two mechanisms:the collision-ionization (CI) mechanism and the collision-excitation-ionization (CEI) mechanism. Recently, it is found that the NSDI process can take place in an extreme ultraviolet (XUV) laser field, and thus few-photon double ionization has been extensive studied by solving the full-dimensional time-dependent Schrdinger equation (TDSE) and the conventional nonstationary perturbation theory. This article reviews the frequency-domain theory of the NSDI processes of an atom in a monochromatic IR and IR+XUV two-color laser fields. In contrast with other approaches, such as the TDSE calculation and S-matrix method, the frequency-domain theory based on the nonperturbative quantum electrodynamics is involved in some advantages:(i) all the recollision processes, including high-order above-threshold ionization (HATI), high-order harmonic generation (HHG) and NSDI, can be dealt under the unified theoretical frame and can be decoupled into two processesa direct above-threshold ionization (ATI) followed by a laser-assisted collision (LAC) or by a laser-assisted recombination process, where these subprocesses can be investigated separately; (ii) the approach can save a lot of computation time because of its nature of time-independent. In this review, we show the different momentum spectral distributions under the CI and CEI mechanisms in the IR and IR+XUV laser fields. With the help of the channel analysis, we compare the contributions of the forward and backward collisions to the NSDI under two conditions of the monochromic IR and IR+XUV two-color laser fields. It is found that, in the CI mechanism, the backward collision makes major contribution to the NSDI in the IR laser field, while the forward collision plays a crucial role in the NSDI when the energy of the recolliding electron is very large in the IR+XUV two-color laser fields. Furthermore, by employing the saddle-point approximation, it is found that the momentum spectrum, whether in the monochromic IR or the IR+XUV two-color laser fields, is attributed to the interference between two trajectories at different saddle-point t0 and 2/1-t0 (1 is the frequency of an IR laser field) when the collision happens in each channel. On the other hand, in the CEI mechanism, the momentum spectra in the monochromic IR or the IR+XUV two-color laser fields present a distinct difference. It is further found that the momentum spectrum in the IR+XUV two-color laser fields is involved in the much more channels than that in the monochromic IR laser field, and thus the complex interference patterns in the momentum spectrum in the two-color laser fields are shown. Moreover, it is found that, in both the CI and CEI mechanisms, the XUV laser field in the NSDI not only can enhance the ionization probability of the first electron, but also can accelerate the first ionized electron so that the bound electron can gain much energy by collision, which is in favor of significant boost of the NSDI probability. This work can help people understand more deeply about the NSDI, and also may pave a way for us to continue investigating the NSDI process of complex system in intense laser fields.
      通信作者: 王兵兵, wbb@aphy.iphy.ac.cn
    • 基金项目: 国家自然科学基金(批准号:61275128,11474348)资助的课题.
      Corresponding author: Wang Bing-Bing, wbb@aphy.iphy.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61275128, 11474348).
    [1]

    Becker W, Liu X, Ho P J, Eberly J H 2012Rev. Mod. Phys. 84 1011

    [2]

    Schafer K J, Yang B, DiMauro L F, Kulander K C 1993Phys. Rev. Lett. 70 1599

    [3]

    Liu C, Nakajima T 2008Phys. Rev. A 78 063424

    [4]

    Wang C, Okunishi M, Hao X, Ito Y, Chen J, Yang Y, Lucchese R R, Zhang M, Yan B, Li W D, Ding D, Ueda K 2016Phys. Rev. A 93 043422

    [5]

    Wang P Y, Jia X Y, Fan D H, Chen J 2015Acta Phys Sin 64 143201(in Chinese)[王品懿, 贾欣燕, 樊代和, 陈京2015 64 143201]

    [6]

    Liu M, Guo Y C, Wang B B 2015Chin. Phys. B 24 073201

    [7]

    Tian Y Y, Li S Y, Wei S S, Guo F M, Zeng S L, Chen J G, Yang Y J 2014Chin. Phys. B 23 053202

    [8]

    Hu Z, Lai X, Liu X, Chen J 2014Phys. Rev. A 89 043401

    [9]

    L'Huillier A, Schafer K J, Kulander K C 1991Phys. Rev. Lett. 66 2200

    [10]

    Watanabe S, Kondo K, Nabekawa Y, Sagisaka A, Kobayashi Y 1994Phys. Rev. Lett. 73 2692

    [11]

    Yuan Z, Guo Y C, Wang B B 2016Acta Phys. Sin. 65 114205(in Chinese)[袁仲, 郭迎春, 王兵兵2016 65 114205]

    [12]

    Xiong W H, Xiao X R, Peng L Y, Gong Q 2016Phys. Rev. A 94 013417

    [13]

    Li W, Wang G L, Zhou X X 2016Chin. Phys. B 25 053203

    [14]

    Zhang J, Liu H F, Pan X F, Du H, Guo J, Liu X S 2016Chin. Phys. B 25 053202

    [15]

    Guan Z, Zhou X X, Bian X B 2016Phys. Rev. A 93 033852

    [16]

    Liu C, Zheng Y, Zeng Z, Li R 2016Phys. Rev. A 93 043806

    [17]

    Wang F, He L, Zhai C, Shi W, Zhang Q, Lan P, Lu P 2015Phys. Rev. A 92 063839

    [18]

    Zhao S F, Jin C, Lucchese R R, Le A T, Lin C D 2011Phys. Rev. A 83 033409

    [19]

    Walker B, Sheehy B, DiMauro L F, Agostini P, Schafer K J, Kulander K C 1994Phys. Rev. Lett. 73 1227

    [20]

    Becker A, Faisal F H 1999Phys. Rev. A 59 R1742

    [21]

    Watson J B, Sanpera A, Lappas D G, Knight P L, Burnett K 1997Phys. Rev. Lett. 78 1884

    [22]

    Yuan Z, Ye D, Xia Q, Liu J, Fu L 2015Phys. Rev. A 91 063417

    [23]

    Ma X, Zhou Y, Lu P 2016Phys. Rev. A 93 013425

    [24]

    Chen Y, Zhou Y, Li Y, Li M, Lan P, Lu P 2016J. Chem. Phys. 144 024304

    [25]

    Ye D, Li M, Fu L, Liu J, Gong Q, Liu Y, Ullrich J 2015Phys. Rev. Lett. 115 123001

    [26]

    Hao X, Chen J, Li W, Wang B, Wang X, Becke W 2014Phys. Rev. Lett. 112 073002

    [27]

    Becker W, Liu X, Ho P J, Eberly J H 2012Rev. Mod. Phys. 84 1011

    [28]

    Chen J, Liu J, Fu L B, Zheng W M 2000Phys. Rev. A 63 011404

    [29]

    Chen J, Liu J, Zheng W M 2002Phys. Rev. A 66 043410

    [30]

    Chen J, Nam C H 2002Phys. Rev. A 66 053415

    [31]

    van der Zwan E V, Lein M 2012Phys. Rev. Lett. 108 043004

    [32]

    Vampa G, Hammond T J, Thiré N, Schmidt B E, Légaré F, McDonald C R, Brabec T Corkum P B 2015Nature 522 462

    [33]

    Li Y, Zhu X, Lan P, Zhang Q, Qin M, Lu P 2014Phys. Rev. A 89 045401

    [34]

    Hadas I, Bahabad A 2014Phys. Rev. Lett. 113 253902

    [35]

    Krausz F, Ivanov M 2009Rev. Mod. Phys. 81 163

    [36]

    Chang Z, Rundquist A, Wang H, Murnane M M, Kapteyn H C 1997Phys. Rev. Lett. 79 2967

    [37]

    McNeil B W J, Thompson N R 2010Nat. Phot. 4 814

    [38]

    Gallmann L, Cirelli C, Keller U 2012Annu. Rev. Phys. Chem. 63 447

    [39]

    Corkum P B 1993Phys. Rev. Lett. 71 1994

    [40]

    Guo D S, Åberg T, Crasemann B 1989Phys. Rev. A 40 4997

    [41]

    Gao L, Li X, Fu P, Freeman R R, Guo D S 2000Phys. Rev. A 61 063407

    [42]

    Fu P, Wang B, Li X, Gao L 2001Phys. Rev. A 64 063401

    [43]

    Wang B, Gao L, Li X, Guo D S, Fu P 2007Phys. Rev. A 75 063419

    [44]

    Guo Y, Fu P, Yan Z C, Gong J, Wang B 2009Phys. Rev. A 80 063408

    [45]

    Wang B, Guo Y, Zhang B, Zhao Z, Yan Z C, Fu P 2010Phys. Rev. A 82 043402

    [46]

    Wang B, Guo Y, Chen J, Yan Z C, Fu P 2012Phys. Rev. A 85 023402

    [47]

    Jin F, Tian Y, Chen J, Yang Y, Liu X, Yan Z C, Wang B 2016Phys. Rev. A 93 043417

    [48]

    Keldysh L V 1964Zh. Eksp. Teor. Fiz. 47 1945

    [49]

    Keldysh L V 1965Sov. Phys. JETP 20 1307

    [50]

    Faisal F H M 1973J. Phys. B:At. Mol. Phys. 6 L89

    [51]

    Reiss H R 1980Phys. Rev. A 22 1786

    [52]

    Guo D S, Åberg T 1988J. Phys. A 21 4577

    [53]

    Guo D S, Drake G W F 1992J. Phys. A 25 3383

    [54]

    Guo D S, Drake G W F 1992J. Phys. A 25 5377

    [55]

    Liu M 2015M. S. Thesis (Beijing:University of Chinese Academy of Sciences) (in Chinese)[刘敏2015硕士学位论文(北京:中国科学院大学)]

    [56]

    Volkov D M 1935Z. Phys. 94 250

    [57]

    Eremina E, Liu X, Rottke H, Sandner W, Dreischuh A, Lindner F, Grasbon F, Paulus G G, Walther H, Moshammer R, Feuerstein B, Ullrich J 2003J. Phys. B 36 3269

    [58]

    Zhang K, Chen J, Hao X L, Fu P, Yan Z C, Wang B 2013Phys. Rev. A 88 043435

    [59]

    Radcliffe P, Arbeiter M, Li W B, Dsterer S, Redlin H, Hayden P, Hough P, Richardson V, Costello J T, Fennel T, Meyer M 2012New J. Phys. 14 043008

    [60]

    Liu A, Thumm U 2014Phys. Rev. A 89 063423

    [61]

    Jin F, Chen J, Yang Y, Yan Z C, Wang B 2016J. Phys. B:At. Mol. Opt. Phys. 49 195602

  • [1]

    Becker W, Liu X, Ho P J, Eberly J H 2012Rev. Mod. Phys. 84 1011

    [2]

    Schafer K J, Yang B, DiMauro L F, Kulander K C 1993Phys. Rev. Lett. 70 1599

    [3]

    Liu C, Nakajima T 2008Phys. Rev. A 78 063424

    [4]

    Wang C, Okunishi M, Hao X, Ito Y, Chen J, Yang Y, Lucchese R R, Zhang M, Yan B, Li W D, Ding D, Ueda K 2016Phys. Rev. A 93 043422

    [5]

    Wang P Y, Jia X Y, Fan D H, Chen J 2015Acta Phys Sin 64 143201(in Chinese)[王品懿, 贾欣燕, 樊代和, 陈京2015 64 143201]

    [6]

    Liu M, Guo Y C, Wang B B 2015Chin. Phys. B 24 073201

    [7]

    Tian Y Y, Li S Y, Wei S S, Guo F M, Zeng S L, Chen J G, Yang Y J 2014Chin. Phys. B 23 053202

    [8]

    Hu Z, Lai X, Liu X, Chen J 2014Phys. Rev. A 89 043401

    [9]

    L'Huillier A, Schafer K J, Kulander K C 1991Phys. Rev. Lett. 66 2200

    [10]

    Watanabe S, Kondo K, Nabekawa Y, Sagisaka A, Kobayashi Y 1994Phys. Rev. Lett. 73 2692

    [11]

    Yuan Z, Guo Y C, Wang B B 2016Acta Phys. Sin. 65 114205(in Chinese)[袁仲, 郭迎春, 王兵兵2016 65 114205]

    [12]

    Xiong W H, Xiao X R, Peng L Y, Gong Q 2016Phys. Rev. A 94 013417

    [13]

    Li W, Wang G L, Zhou X X 2016Chin. Phys. B 25 053203

    [14]

    Zhang J, Liu H F, Pan X F, Du H, Guo J, Liu X S 2016Chin. Phys. B 25 053202

    [15]

    Guan Z, Zhou X X, Bian X B 2016Phys. Rev. A 93 033852

    [16]

    Liu C, Zheng Y, Zeng Z, Li R 2016Phys. Rev. A 93 043806

    [17]

    Wang F, He L, Zhai C, Shi W, Zhang Q, Lan P, Lu P 2015Phys. Rev. A 92 063839

    [18]

    Zhao S F, Jin C, Lucchese R R, Le A T, Lin C D 2011Phys. Rev. A 83 033409

    [19]

    Walker B, Sheehy B, DiMauro L F, Agostini P, Schafer K J, Kulander K C 1994Phys. Rev. Lett. 73 1227

    [20]

    Becker A, Faisal F H 1999Phys. Rev. A 59 R1742

    [21]

    Watson J B, Sanpera A, Lappas D G, Knight P L, Burnett K 1997Phys. Rev. Lett. 78 1884

    [22]

    Yuan Z, Ye D, Xia Q, Liu J, Fu L 2015Phys. Rev. A 91 063417

    [23]

    Ma X, Zhou Y, Lu P 2016Phys. Rev. A 93 013425

    [24]

    Chen Y, Zhou Y, Li Y, Li M, Lan P, Lu P 2016J. Chem. Phys. 144 024304

    [25]

    Ye D, Li M, Fu L, Liu J, Gong Q, Liu Y, Ullrich J 2015Phys. Rev. Lett. 115 123001

    [26]

    Hao X, Chen J, Li W, Wang B, Wang X, Becke W 2014Phys. Rev. Lett. 112 073002

    [27]

    Becker W, Liu X, Ho P J, Eberly J H 2012Rev. Mod. Phys. 84 1011

    [28]

    Chen J, Liu J, Fu L B, Zheng W M 2000Phys. Rev. A 63 011404

    [29]

    Chen J, Liu J, Zheng W M 2002Phys. Rev. A 66 043410

    [30]

    Chen J, Nam C H 2002Phys. Rev. A 66 053415

    [31]

    van der Zwan E V, Lein M 2012Phys. Rev. Lett. 108 043004

    [32]

    Vampa G, Hammond T J, Thiré N, Schmidt B E, Légaré F, McDonald C R, Brabec T Corkum P B 2015Nature 522 462

    [33]

    Li Y, Zhu X, Lan P, Zhang Q, Qin M, Lu P 2014Phys. Rev. A 89 045401

    [34]

    Hadas I, Bahabad A 2014Phys. Rev. Lett. 113 253902

    [35]

    Krausz F, Ivanov M 2009Rev. Mod. Phys. 81 163

    [36]

    Chang Z, Rundquist A, Wang H, Murnane M M, Kapteyn H C 1997Phys. Rev. Lett. 79 2967

    [37]

    McNeil B W J, Thompson N R 2010Nat. Phot. 4 814

    [38]

    Gallmann L, Cirelli C, Keller U 2012Annu. Rev. Phys. Chem. 63 447

    [39]

    Corkum P B 1993Phys. Rev. Lett. 71 1994

    [40]

    Guo D S, Åberg T, Crasemann B 1989Phys. Rev. A 40 4997

    [41]

    Gao L, Li X, Fu P, Freeman R R, Guo D S 2000Phys. Rev. A 61 063407

    [42]

    Fu P, Wang B, Li X, Gao L 2001Phys. Rev. A 64 063401

    [43]

    Wang B, Gao L, Li X, Guo D S, Fu P 2007Phys. Rev. A 75 063419

    [44]

    Guo Y, Fu P, Yan Z C, Gong J, Wang B 2009Phys. Rev. A 80 063408

    [45]

    Wang B, Guo Y, Zhang B, Zhao Z, Yan Z C, Fu P 2010Phys. Rev. A 82 043402

    [46]

    Wang B, Guo Y, Chen J, Yan Z C, Fu P 2012Phys. Rev. A 85 023402

    [47]

    Jin F, Tian Y, Chen J, Yang Y, Liu X, Yan Z C, Wang B 2016Phys. Rev. A 93 043417

    [48]

    Keldysh L V 1964Zh. Eksp. Teor. Fiz. 47 1945

    [49]

    Keldysh L V 1965Sov. Phys. JETP 20 1307

    [50]

    Faisal F H M 1973J. Phys. B:At. Mol. Phys. 6 L89

    [51]

    Reiss H R 1980Phys. Rev. A 22 1786

    [52]

    Guo D S, Åberg T 1988J. Phys. A 21 4577

    [53]

    Guo D S, Drake G W F 1992J. Phys. A 25 3383

    [54]

    Guo D S, Drake G W F 1992J. Phys. A 25 5377

    [55]

    Liu M 2015M. S. Thesis (Beijing:University of Chinese Academy of Sciences) (in Chinese)[刘敏2015硕士学位论文(北京:中国科学院大学)]

    [56]

    Volkov D M 1935Z. Phys. 94 250

    [57]

    Eremina E, Liu X, Rottke H, Sandner W, Dreischuh A, Lindner F, Grasbon F, Paulus G G, Walther H, Moshammer R, Feuerstein B, Ullrich J 2003J. Phys. B 36 3269

    [58]

    Zhang K, Chen J, Hao X L, Fu P, Yan Z C, Wang B 2013Phys. Rev. A 88 043435

    [59]

    Radcliffe P, Arbeiter M, Li W B, Dsterer S, Redlin H, Hayden P, Hough P, Richardson V, Costello J T, Fennel T, Meyer M 2012New J. Phys. 14 043008

    [60]

    Liu A, Thumm U 2014Phys. Rev. A 89 063423

    [61]

    Jin F, Chen J, Yang Y, Yan Z C, Wang B 2016J. Phys. B:At. Mol. Opt. Phys. 49 195602

  • [1] 葛振杰, 苏旭, 白丽华. 反旋双色椭圆偏振激光场中Ar原子的非序列双电离.  , 2024, 73(9): 093201. doi: 10.7498/aps.73.20231583
    [2] 汉琳, 苗淑莉, 李鹏程. 优化组合激光场驱动原子产生高次谐波及单个超短阿秒脉冲理论研究.  , 2022, 71(23): 233204. doi: 10.7498/aps.71.20221298
    [3] 江淼, 郑晓冉, 林南省, 李英骏. 正负电子对产生过程中不同外场宽度下的多光子跃迁效应.  , 2021, 70(23): 231202. doi: 10.7498/aps.70.20202101
    [4] 黄诚, 钟明敏, 吴正茂. 强场非次序双电离中再碰撞动力学的强度依赖.  , 2019, 68(3): 033201. doi: 10.7498/aps.68.20181811
    [5] 白春江, 崔万照, 余金清. 超短超强激光脉冲辐照超薄碳膜电离状态研究.  , 2016, 65(11): 113201. doi: 10.7498/aps.65.113201
    [6] 肖相如, 王慕雪, 黎敏, 耿基伟, 刘运全, 彭良友. 强激光场中原子单电离的半经典方法.  , 2016, 65(22): 220203. doi: 10.7498/aps.65.220203
    [7] 赵磊, 张琦, 董敬伟, 吕航, 徐海峰. 不同原子在飞秒强激光场中的里德堡态激发和双电离.  , 2016, 65(22): 223201. doi: 10.7498/aps.65.223201
    [8] 王品懿, 贾欣燕, 樊代和, 陈京. 不同波长下氩原子高阶阈上电离的类共振增强结构.  , 2015, 64(14): 143201. doi: 10.7498/aps.64.143201
    [9] 唐友福, 刘树林, 雷娜, 姜锐红, 刘颖慧. 基于广义局部频率的Duffing系统频域特征分析.  , 2012, 61(17): 170504. doi: 10.7498/aps.61.170504
    [10] 辛国国, 赵清, 刘杰. 非序列双电离向饱和区过渡的电子最大关联度.  , 2012, 61(13): 133201. doi: 10.7498/aps.61.133201
    [11] 辛国国, 叶地发, 赵清, 刘杰. 原子非序列双电离的多次返回碰撞电离机理分析.  , 2011, 60(9): 093204. doi: 10.7498/aps.60.093204
    [12] 马宁, 王美山, 杨传路, 熊德林, 李小虎, 马晓光. 激光场强度对NO电子态粒子数布居影响的理论研究.  , 2010, 59(1): 215-221. doi: 10.7498/aps.59.215
    [13] 叶小亮, 周效信, 赵松峰, 李鹏程. 原子在两色组合激光场中产生的单个阿秒脉冲.  , 2009, 58(3): 1579-1585. doi: 10.7498/aps.58.1579
    [14] 李会山, 李鹏程, 周效信. 强激光场中模型氢原子的势函数对产生高次谐波强度的影响.  , 2009, 58(11): 7633-7639. doi: 10.7498/aps.58.7633
    [15] 李洪云, 王兵兵, 蒋红兵, 陈 京, 李晓峰, 刘 杰, 龚旗煌, 傅盘铭. 静电场对强激光场非序列双电子电离的影响.  , 2008, 57(1): 124-131. doi: 10.7498/aps.57.124
    [16] 赵松峰, 周效信, 金 成. 强激光场中模型氢原子和真实氢原子的高次谐波与电离特性研究.  , 2006, 55(8): 4078-4085. doi: 10.7498/aps.55.4078
    [17] 李鹏程, 周效信, 董晨钟, 赵松峰. 强激光场中长程势与短程势原子产生高次谐波与电离特性研究.  , 2004, 53(3): 750-755. doi: 10.7498/aps.53.750
    [18] 周效信, 李白文. 强激光场中原子的束缚态和连续态对高次谐波的影响.  , 2001, 50(10): 1902-1906. doi: 10.7498/aps.50.1902
    [19] 邵磊, 霍裕昆, 王平晓, 孔青, 袁祥群, 冯量. 场极化方向对强激光加速电子效应的影响.  , 2001, 50(7): 1284-1289. doi: 10.7498/aps.50.1284
    [20] 郑丽萍, 邱锡钧. 光强、频率对强激光场中的多原子分子离子增强电离行为的影响.  , 2000, 49(10): 1965-1968. doi: 10.7498/aps.49.1965
计量
  • 文章访问数:  5794
  • PDF下载量:  257
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-18
  • 修回日期:  2016-11-06
  • 刊出日期:  2016-11-05

/

返回文章
返回
Baidu
map