搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚合物充模过程的基于高阶Taylor展开的改进光滑粒子动力学模拟

蒋涛 陆伟刚 任金莲 徐磊 陆林广

引用本文:
Citation:

聚合物充模过程的基于高阶Taylor展开的改进光滑粒子动力学模拟

蒋涛, 陆伟刚, 任金莲, 徐磊, 陆林广

Simulation of polymer filling process by an improved smoothed particle hydrodynamics method based on higher-order Taylor expansion

Jiang Tao, Lu Wei-Gang, Ren Jin-Lian, Xu Lei, Lu Lin-Guang
PDF
导出引用
  • 基于高阶Taylor展开提出一种改进的光滑粒子流体动力学(CSPH_HT)方法,并试探性地应用于涉及界面变形的黏弹性聚合物熔体充模过程的模拟.首先,针对传统光滑粒子流体动力学(SPH)方法和已有改进SPH方法的缺点,基于高阶Taylor展开,建立了一种新的改进SPH格式.然后通过基准算例验证了新的改进SPH方法的优势.最后,运用改进SPH方法模拟了环形腔和方形腔内的聚合物熔体充模过程,展示了XPP熔体和FENE-P熔体充模过程中界面演化的不同之处,分析了型腔参数对流动的影响.数值结果表明:CSPH_HT方法具有较高的数值精度和较好的数值稳定性,XPP(extended pom-pom)熔体和有限拉伸非线性弹簧(FENE-P)熔体具有不同的流动特性,型腔参数的微小变化能够对流动造成很大影响.
    In this work, an improved smoothed particle hydrodynamics (SPH) method based on higher order Taylor expansion (CSPH_HT) is proposed and tentatively applied to the filling process of the viscoelastic fluid. Owing to the disadvantages of the traditional SPH method and the presented corrected SPH methods, the CSPH_HT method based on the higher order Taylor expansion is proposed and described in detail. In order to illustrate the validity and merits of the CSPH_HT method, two benchmark problems are simulated and discussed. The numerical results show that the proposed CSPH_HT method has higher numerical accuracy and better stability. Subsequently, the proposed improved SPH method is extended to simulate the filling processes of the viscoelastic fluid in the ring-shaped mold, for the purpose of exhibiting the capacity of the proposed method. The extended pom-pom (XPP) model and finitely extensible nonlinear elastic-Peterlin (FENE-P) model fluid are all considered in this case, in which the viscoelastic fluid flow and extra stress are shown. The differences in fluid flow between the XPP model and FENE-P model are also discussed. Finally, the filling process of the viscoelastic fluid in the square mold with single inlet or two inlets are tentatively simulated. The differences between the filling process of XPP fluid and the filling process of FENE-P fluid are shown, and the influences of the parameters of the mold on the flow are analyzed. Especially, the influences of locations and sizes of two inlets on the filling process of viscoelastic fluid are illustrated. The XPP model fluid and FENE-P model fluid show different characteristics in the filling process and small change of the size of the mold can lead to obvious change of the flow.
      通信作者: 任金莲, rjl20081223@126.com,jtrjl_2007@126.com.
    • 基金项目: 国家自然科学基金(批准号:11501495,51541912,51309200)、中国博士后科学基金(批准号:2014M550310,2015M581869,2015T80589)、江苏省自然科学基金(批准号:BK20150436,BK20130436)、江苏省高校面上基金(批准号:15KJB110025)和国家科技支撑计划(批准号:2015BAD24B02-02)资助的课题.
      Corresponding author: Ren Jin-Lian, rjl20081223@126.com,jtrjl_2007@126.com.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11501495, 51541912, 51309200), the Postdoctoral Science Foundation of China (Grant Nos. 2014M550310, 2015M581869, 2015T80589), the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BK20150436, BK20130436), the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province, China (Grant No. 15KJB110025), and the sub-project of National Key Technology Research and Development Program of the Ministry of Science and Technology of China (Grant No. 2015BAD24B02-02).
    [1]

    Carvalho D M, Tomé M F, Cuminato J A, Castelo A, Ferreira V G 2004TEMA:Tendên. Matemá. Aplica. Comput. 5 195

    [2]

    John D A (translated by Wu S P, Liu Z S) 2007Computational Fluid Dynamics:the Basics with Applications (Beijing:China Machine Press) (in Chinese)[约翰D安德森著(吴颂平, 刘赵森译) 2007计算流体力学基础及其应用(北京:机械工业出版社)]

    [3]

    Liu R F, Wang Z F 2001The Capture of Moving Interface and the Numerical Methods (Hefei:University of Science and Technology of China Press)[刘儒勋, 王志峰2001运动界面追踪与数值方法(合肥:中国科学技术大学出版社)]

    [4]

    Fu D X, Ma Y W 2002Computational Fluid Mechanics (Beijing:Higher Education Press) (in Chinese)[傅德薰, 马延文2002计算流体力学(北京:高等教育出版社)]

    [5]

    Harlow F H, Amsden A A 1970J. Comput. Phys. 6 322

    [6]

    Hirt C W, Nichols B D 1981J. Comput. Phys. 39 201

    [7]

    Li Q 2012Ph. D. Dissertation (Xi'an:Northwestern Polytechnical University) (in Chinese)[李强2012博士学位论文(西安:西北工业大学)]

    [8]

    Li S F, Liu W K 2002Appl. Mech. Rev. 55 1

    [9]

    Liu G R, Liu M B 2003Smoothed Particle Hydrodynamics:A Mesh-free Particle Method (Singapore:World Scientific)

    [10]

    Monaghan J J 1988Comput. Phy. Commun. 48 89

    [11]

    Fan X J, Tanner R I, Zheng R 2010J. Non-Newton. Fluid Mech. 165 219

    [12]

    Liu W K, Jun S, Zhang Y F 1995Int. J. Num. Meth. Flu. 20 1081

    [13]

    Chen J K, Beraun J E 2000Comput. Meth. Appl. Mech. Eng. 190 225

    [14]

    Batra R C, Zhang G M 2007Comput. Mech. 40 531

    [15]

    Zhang G M, Batra R C 2009Comput. Mech. 43 321

    [16]

    Liu M B, Xie W P, Liu G R 2005Appl. Math. Model. 29 1252

    [17]

    Oishi C M, Martins F P, Tomé M F, Alves M A 2012J. Non-Newton. Fluid Mech. 169-170 91

    [18]

    Ren J L, Lu W G, Jiang T 2015Acta Phys. Sin. 64 080202(in Chinese)[任金莲, 陆伟刚, 蒋涛2015 64 080202]

    [19]

    Yang X F, Liu M B 2012Acta Phys. Sin. 61 224701(in Chinese)[杨秀峰, 刘谋斌2012 61 224701]

    [20]

    Ren J L, Ouyang J, Jiang T 2012Comput. Mech. 49 643

    [21]

    Tomé M F, Mangiavacchi N, Castelo A, Cuminato J A, McKee S 2002J. Non-Newton. Fluid Mech. 106 61

  • [1]

    Carvalho D M, Tomé M F, Cuminato J A, Castelo A, Ferreira V G 2004TEMA:Tendên. Matemá. Aplica. Comput. 5 195

    [2]

    John D A (translated by Wu S P, Liu Z S) 2007Computational Fluid Dynamics:the Basics with Applications (Beijing:China Machine Press) (in Chinese)[约翰D安德森著(吴颂平, 刘赵森译) 2007计算流体力学基础及其应用(北京:机械工业出版社)]

    [3]

    Liu R F, Wang Z F 2001The Capture of Moving Interface and the Numerical Methods (Hefei:University of Science and Technology of China Press)[刘儒勋, 王志峰2001运动界面追踪与数值方法(合肥:中国科学技术大学出版社)]

    [4]

    Fu D X, Ma Y W 2002Computational Fluid Mechanics (Beijing:Higher Education Press) (in Chinese)[傅德薰, 马延文2002计算流体力学(北京:高等教育出版社)]

    [5]

    Harlow F H, Amsden A A 1970J. Comput. Phys. 6 322

    [6]

    Hirt C W, Nichols B D 1981J. Comput. Phys. 39 201

    [7]

    Li Q 2012Ph. D. Dissertation (Xi'an:Northwestern Polytechnical University) (in Chinese)[李强2012博士学位论文(西安:西北工业大学)]

    [8]

    Li S F, Liu W K 2002Appl. Mech. Rev. 55 1

    [9]

    Liu G R, Liu M B 2003Smoothed Particle Hydrodynamics:A Mesh-free Particle Method (Singapore:World Scientific)

    [10]

    Monaghan J J 1988Comput. Phy. Commun. 48 89

    [11]

    Fan X J, Tanner R I, Zheng R 2010J. Non-Newton. Fluid Mech. 165 219

    [12]

    Liu W K, Jun S, Zhang Y F 1995Int. J. Num. Meth. Flu. 20 1081

    [13]

    Chen J K, Beraun J E 2000Comput. Meth. Appl. Mech. Eng. 190 225

    [14]

    Batra R C, Zhang G M 2007Comput. Mech. 40 531

    [15]

    Zhang G M, Batra R C 2009Comput. Mech. 43 321

    [16]

    Liu M B, Xie W P, Liu G R 2005Appl. Math. Model. 29 1252

    [17]

    Oishi C M, Martins F P, Tomé M F, Alves M A 2012J. Non-Newton. Fluid Mech. 169-170 91

    [18]

    Ren J L, Lu W G, Jiang T 2015Acta Phys. Sin. 64 080202(in Chinese)[任金莲, 陆伟刚, 蒋涛2015 64 080202]

    [19]

    Yang X F, Liu M B 2012Acta Phys. Sin. 61 224701(in Chinese)[杨秀峰, 刘谋斌2012 61 224701]

    [20]

    Ren J L, Ouyang J, Jiang T 2012Comput. Mech. 49 643

    [21]

    Tomé M F, Mangiavacchi N, Castelo A, Cuminato J A, McKee S 2002J. Non-Newton. Fluid Mech. 106 61

  • [1] 许晓阳, 周亚丽, 余鹏. eXtended Pom-Pom黏弹性流体的改进光滑粒子动力学模拟.  , 2023, 72(3): 034701. doi: 10.7498/aps.72.20221922
    [2] 张陶然, 莫润阳, 胡静, 陈时, 王成会, 郭建中. 黏弹介质包裹的液体腔中气泡的动力学分析.  , 2021, 70(12): 124301. doi: 10.7498/aps.70.20201876
    [3] 陈福振, 强洪夫, 苗刚, 高巍然. 燃料抛撒成雾及其燃烧爆炸的光滑离散颗粒流体动力学方法数值模拟研究.  , 2015, 64(11): 110202. doi: 10.7498/aps.64.110202
    [4] 孙鹏楠, 李云波, 明付仁. 自由上浮气泡运动特性的光滑粒子流体动力学模拟.  , 2015, 64(17): 174701. doi: 10.7498/aps.64.174701
    [5] 马理强, 苏铁熊, 刘汉涛, 孟青. 微液滴振荡过程的光滑粒子动力学方法数值模拟.  , 2015, 64(13): 134702. doi: 10.7498/aps.64.134702
    [6] 任金莲, 陆伟刚, 蒋涛. 充模过程中熔接痕的改进光滑粒子动力学方法模拟与预测.  , 2015, 64(8): 080202. doi: 10.7498/aps.64.080202
    [7] 陈福振, 强洪夫, 高巍然. 气粒两相流传热问题的光滑离散颗粒流体动力学方法数值模拟.  , 2014, 63(23): 230206. doi: 10.7498/aps.63.230206
    [8] 蒋涛, 任金莲, 徐磊, 陆林广. 非等温非牛顿黏性流体流动问题的修正光滑粒子动力学方法模拟.  , 2014, 63(21): 210203. doi: 10.7498/aps.63.210203
    [9] 雷娟棉, 黄灿. 一种改进的光滑粒子流体动力学前处理方法.  , 2014, 63(14): 144702. doi: 10.7498/aps.63.144702
    [10] 王芳, 李俊林, 杨斌鑫. 黏弹性流体充模过程中凝固现象的数值模拟.  , 2014, 63(8): 084601. doi: 10.7498/aps.63.084601
    [11] 苏铁熊, 马理强, 刘谋斌, 常建忠. 基于光滑粒子动力学方法的液滴冲击固壁面问题数值模拟.  , 2013, 62(6): 064702. doi: 10.7498/aps.62.064702
    [12] 蒋涛, 陆林广, 陆伟刚. 等直径微液滴碰撞过程的改进光滑粒子动力学模拟.  , 2013, 62(22): 224701. doi: 10.7498/aps.62.224701
    [13] 邱流潮. 基于不可压缩光滑粒子动力学的黏性液滴变形过程仿真.  , 2013, 62(12): 124702. doi: 10.7498/aps.62.124702
    [14] 韩亚伟, 强洪夫, 赵玖玲, 高巍然. 光滑粒子流体动力学方法固壁处理的一种新型排斥力模型.  , 2013, 62(4): 044702. doi: 10.7498/aps.62.044702
    [15] 马理强, 常建忠, 刘汉涛, 刘谋斌. 液滴溅落问题的光滑粒子动力学模拟.  , 2012, 61(5): 054701. doi: 10.7498/aps.61.054701
    [16] 杨斌鑫, 欧阳洁. 黏弹性熔体充模流动诱导残余应力模拟.  , 2012, 61(23): 234602. doi: 10.7498/aps.61.234602
    [17] 强洪夫, 刘开, 陈福振. 液滴在气固交界面变形移动问题的光滑粒子流体动力学模拟.  , 2012, 61(20): 204701. doi: 10.7498/aps.61.204701
    [18] 蒋涛, 欧阳洁, 赵晓凯, 任金莲. 黏性液滴变形过程的核梯度修正光滑粒子动力学模拟.  , 2011, 60(5): 054701. doi: 10.7498/aps.60.054701
    [19] 刘谋斌, 常建忠. 光滑粒子动力学方法中粒子分布与数值稳定性分析.  , 2010, 59(6): 3654-3662. doi: 10.7498/aps.59.3654
    [20] 姚玉书, 陈红, 徐济安, 何寿安. 流体静压力下LiIO3晶体β→α相变的动力学过程.  , 1981, 30(6): 835-840. doi: 10.7498/aps.30.835
计量
  • 文章访问数:  5614
  • PDF下载量:  177
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-13
  • 修回日期:  2016-07-26
  • 刊出日期:  2016-11-05

/

返回文章
返回
Baidu
map