搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

充模过程中熔接痕的改进光滑粒子动力学方法模拟与预测

任金莲 陆伟刚 蒋涛

引用本文:
Citation:

充模过程中熔接痕的改进光滑粒子动力学方法模拟与预测

任金莲, 陆伟刚, 蒋涛

Simulation and prediction of the weld-line in the filling process using a corrected smoothed particle hydrodynamics method

Ren Jin-Lian, Lu Wei-Gang, Jiang Tao
PDF
导出引用
  • 提出了一种黏弹性流体的改进光滑粒子动力学(SPH)方法以试探性地模拟和预测黏弹性FENE-P熔体充模过程中熔接痕的形态演化. 首先基于SPH方法建立了聚合物流动的宏微观耦合模型, 同时提出了黏弹性流体的改进SPH离散格式. 随后, 通过模拟一些基准算例验证了改进的SPH方法模拟聚合物宏微观耦合问题的有效性及收敛性, 以及所提出的黏弹性温度模型的有效性. 最后, 模拟了环型腔内的充模过程, 试探性地展示了充模过程中微观分子的变形过程. 同时采用顺序热流道技术模拟了多浇口C形腔内的充模过程, 并与其他数值结果做比较. 数值结果表明: 对于大制件多浇口充模过程, 顺序热流道技术能够改善甚至消除充模过程中的熔接痕.
    A corrected smoothed particle hydrodynamics (SPH) method for viscoelastic fluid is proposed and used to tentatively simulate and predict the behavior of the molecule near the weld line in the filling process of the FENE-P fluid in this paper. And the corrected SPH scheme for the viscoelastic fluid is simultaneously presented. Firstly, a coupled macro-micro model based on the SPH method for the viscoelatic fluid is set up. Then, some benchmarks, such as the flow behavior of the periodic cylinders of FENE-P fluid and the non-isothermal Poiseuille flow based on the Oldroyd-B model which is a simplified model of FENE-P model, are simulated to verify their validity and the convergence of the corrected SPH method of solving the coupled macro-micro problem of the polymer and the discrete SPH temperature model for viscoelastic fluid. Finally, the filling process of the viscoelastic fluid based on the FENE-P model in a ring-shaped mold is simulated, and the behavior of the micro molecules in the filling process is tentatively shown by orientation ellipse. Meanwhile the non-isothermal filling process of the FENE-P fluid is also implemented. The numerical results show clearly the behavior of the molecules in the filling process of the FENE-P fluid, the weld line is indeed observed in the filling process of the FENE-P fluid in the ring-shaped mold, and the non-isothermal filling process can improve the weld line to some extent. In order to further discuss the improvement of the weld line, the filling processes of different cases are simulated in the multiple-gating C-shaped mold by using the pattern of the hot runner and valve gates, and the obtained results are compared with other available data. Moreover, the effect of the delay time needed for the fluid to be injected on the flow is also investigated. The numerical results show that the pattern of the hot runner and valve gates can improve and even remove the weld-line in the filling process of the polymer melt, especially for the big-sized product, and the shorter the delay time is, the faster the flow is, and the bigger the appearance probability of the weld line is.
    • 基金项目: 江苏省青年自然科学基金(批准号: BK20130436)和中国博士后科学基金(批准号: 2014M550310)资助的课题.
    • Funds: Project supported by the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20130436) and the Postdoctoral Science Foundation of China (Grant No. 2014M550310)
    [1]

    Xiao C J, Liu C T, Shen C Y 2003 Eng. Plast. Appl. 3 17 (in Chinese) [肖长江, 刘春太, 申长雨 2003 工程塑料应用 3 17]

    [2]

    Dong L 2007 Ph. D. Dissertation (Changchun: Jilin University) (in Chinese) [董林 2007 博士研究生学位论文 (长春: 吉林大学)]

    [3]

    Tomé M F, Duffy B, McKee S 1996 J. Non-Newton. Fluid Mech. 62 9

    [4]

    John D, Anderson J R 2002 Computational Fluid Dynamics: the Basics with Applications (Beijing: Tsinghua University Press)

    [5]

    Yang B X, Ouyang J 2012 Acta Phys. Sin. 61 234602 (in Chinese) [杨斌鑫, 欧阳洁 2012 61 234602]

    [6]

    Fu D X, Ma Y W 2002 Computational Fluid Mechanics (Beijing: Higher Education Press) (in Chinese) [傅德薰, 马延文 2002 计算流体力学 (北京: 高等教育出版社)]

    [7]

    Li Q 2012 Ph. D. Dissertation (Xi'an: Northwestern Polytechnical University) (in Chinese) [李强 2012 博士研究生学位论文 (西安: 西北工业大学)]

    [8]

    Chen R J, Ge H X 2010 Chin. Phys. B 19 090201

    [9]

    Gingold R A, Monaghan J J 1977 Mon. Not. Roy. Astron. Soc. 181 375

    [10]

    Ma L Q, Chang J Z, Liu H T, Liu M B 2012 Acta Phys. Sin. 61 054701 (in Chinese) [马理强, 常建忠, 刘汉涛, 刘谋斌 2012 61 054701]

    [11]

    Fan X J., Tanner R I, Zheng R 2010 J. Non-Newton. Fluid Mech. 165 219

    [12]

    Han X, Yang G, Long X Y 2007 J. Hunan Univ. 34 28 (in Chinese) [韩旭, 杨刚, 龙述尧 2007 湖南大学学报 34 28]

    [13]

    Batra R C, Zhang G M 2007 Comput. Mech. 40 531

    [14]

    Liu M B, Xie W P, Liu G R 2005 Appl. Math. Model. 29 1252

    [15]

    Ren J L, Ouyang J, Jiang T 2012 Comput. Mech. 49 643

    [16]

    Jiang T, Ren J L, Xu L, Lu L G 2014 Acta Phys. Sin. 63 210203 (in Chinese) [蒋涛, 任金莲, 徐磊, 陆林广 2014 63 210203]

    [17]

    Ruan C L 2011 Ph. D. Dissertation (Xi'an: Northwestern Polytechnical University) (in Chinese) [阮春蕾 2011 博士研究生学位论文 (西安: 西北工业大学)]

    [18]

    Colagrossi A, Landrini M 2003 J. Comput. Phys. 191 448

    [19]

    Cleary P W 2010 Appl. Math. Model. 34 3189

    [20]

    Han X H 2007 Ph. D. Dissertation (Dalian: Dalian University of Technology) (in Chinese) [韩先洪 2007 博士学位论文 (大连: 大连理工大学)]

    [21]

    Monaghan J J, Kajtar J B 2009 Comput. Phys. Commun. 180 1811

    [22]

    Liu A W, Bornside D E, Amstrong R C, Brown R A 1998 J. Non-Newton. Fluid Mech. 77 153

    [23]

    Ahsan A 2011 Evaporation, Condensation and Heat Transfer (Croatia: InTech)

    [24]

    Liu Y 2009 Ph. D. Dissertation (Guangzhou: South China University of Technology) (in Chinese) [刘毅2009 博士研究生学位论文 (广州: 华南理工大学)]

  • [1]

    Xiao C J, Liu C T, Shen C Y 2003 Eng. Plast. Appl. 3 17 (in Chinese) [肖长江, 刘春太, 申长雨 2003 工程塑料应用 3 17]

    [2]

    Dong L 2007 Ph. D. Dissertation (Changchun: Jilin University) (in Chinese) [董林 2007 博士研究生学位论文 (长春: 吉林大学)]

    [3]

    Tomé M F, Duffy B, McKee S 1996 J. Non-Newton. Fluid Mech. 62 9

    [4]

    John D, Anderson J R 2002 Computational Fluid Dynamics: the Basics with Applications (Beijing: Tsinghua University Press)

    [5]

    Yang B X, Ouyang J 2012 Acta Phys. Sin. 61 234602 (in Chinese) [杨斌鑫, 欧阳洁 2012 61 234602]

    [6]

    Fu D X, Ma Y W 2002 Computational Fluid Mechanics (Beijing: Higher Education Press) (in Chinese) [傅德薰, 马延文 2002 计算流体力学 (北京: 高等教育出版社)]

    [7]

    Li Q 2012 Ph. D. Dissertation (Xi'an: Northwestern Polytechnical University) (in Chinese) [李强 2012 博士研究生学位论文 (西安: 西北工业大学)]

    [8]

    Chen R J, Ge H X 2010 Chin. Phys. B 19 090201

    [9]

    Gingold R A, Monaghan J J 1977 Mon. Not. Roy. Astron. Soc. 181 375

    [10]

    Ma L Q, Chang J Z, Liu H T, Liu M B 2012 Acta Phys. Sin. 61 054701 (in Chinese) [马理强, 常建忠, 刘汉涛, 刘谋斌 2012 61 054701]

    [11]

    Fan X J., Tanner R I, Zheng R 2010 J. Non-Newton. Fluid Mech. 165 219

    [12]

    Han X, Yang G, Long X Y 2007 J. Hunan Univ. 34 28 (in Chinese) [韩旭, 杨刚, 龙述尧 2007 湖南大学学报 34 28]

    [13]

    Batra R C, Zhang G M 2007 Comput. Mech. 40 531

    [14]

    Liu M B, Xie W P, Liu G R 2005 Appl. Math. Model. 29 1252

    [15]

    Ren J L, Ouyang J, Jiang T 2012 Comput. Mech. 49 643

    [16]

    Jiang T, Ren J L, Xu L, Lu L G 2014 Acta Phys. Sin. 63 210203 (in Chinese) [蒋涛, 任金莲, 徐磊, 陆林广 2014 63 210203]

    [17]

    Ruan C L 2011 Ph. D. Dissertation (Xi'an: Northwestern Polytechnical University) (in Chinese) [阮春蕾 2011 博士研究生学位论文 (西安: 西北工业大学)]

    [18]

    Colagrossi A, Landrini M 2003 J. Comput. Phys. 191 448

    [19]

    Cleary P W 2010 Appl. Math. Model. 34 3189

    [20]

    Han X H 2007 Ph. D. Dissertation (Dalian: Dalian University of Technology) (in Chinese) [韩先洪 2007 博士学位论文 (大连: 大连理工大学)]

    [21]

    Monaghan J J, Kajtar J B 2009 Comput. Phys. Commun. 180 1811

    [22]

    Liu A W, Bornside D E, Amstrong R C, Brown R A 1998 J. Non-Newton. Fluid Mech. 77 153

    [23]

    Ahsan A 2011 Evaporation, Condensation and Heat Transfer (Croatia: InTech)

    [24]

    Liu Y 2009 Ph. D. Dissertation (Guangzhou: South China University of Technology) (in Chinese) [刘毅2009 博士研究生学位论文 (广州: 华南理工大学)]

  • [1] 许晓阳, 周亚丽, 余鹏. eXtended Pom-Pom黏弹性流体的改进光滑粒子动力学模拟.  , 2023, 72(3): 034701. doi: 10.7498/aps.72.20221922
    [2] 张陶然, 莫润阳, 胡静, 陈时, 王成会, 郭建中. 黏弹介质包裹的液体腔中气泡的动力学分析.  , 2021, 70(12): 124301. doi: 10.7498/aps.70.20201876
    [3] 张晓玲, 司乐飞, 孟庆端, 吕衍秋, 司俊杰. 考虑底充胶固化过程的InSb面阵探测器结构分析模型.  , 2017, 66(1): 016102. doi: 10.7498/aps.66.016102
    [4] 李强, 邵水军, 李世顺. 复杂型腔充模过程中分子构型演化的数值模拟.  , 2016, 65(24): 244601. doi: 10.7498/aps.65.244601
    [5] 蒋涛, 陆伟刚, 任金莲, 徐磊, 陆林广. 聚合物充模过程的基于高阶Taylor展开的改进光滑粒子动力学模拟.  , 2016, 65(22): 220202. doi: 10.7498/aps.65.220202
    [6] 刘虎, 强洪夫, 陈福振, 韩亚伟, 范树佳. 一种新型光滑粒子动力学固壁边界施加模型.  , 2015, 64(9): 094701. doi: 10.7498/aps.64.094701
    [7] 马理强, 苏铁熊, 刘汉涛, 孟青. 微液滴振荡过程的光滑粒子动力学方法数值模拟.  , 2015, 64(13): 134702. doi: 10.7498/aps.64.134702
    [8] 雷娟棉, 黄灿. 一种改进的光滑粒子流体动力学前处理方法.  , 2014, 63(14): 144702. doi: 10.7498/aps.63.144702
    [9] 王芳, 李俊林, 杨斌鑫. 黏弹性流体充模过程中凝固现象的数值模拟.  , 2014, 63(8): 084601. doi: 10.7498/aps.63.084601
    [10] 苏铁熊, 马理强, 刘谋斌, 常建忠. 基于光滑粒子动力学方法的液滴冲击固壁面问题数值模拟.  , 2013, 62(6): 064702. doi: 10.7498/aps.62.064702
    [11] 蒋涛, 陆林广, 陆伟刚. 等直径微液滴碰撞过程的改进光滑粒子动力学模拟.  , 2013, 62(22): 224701. doi: 10.7498/aps.62.224701
    [12] 邱流潮. 基于不可压缩光滑粒子动力学的黏性液滴变形过程仿真.  , 2013, 62(12): 124702. doi: 10.7498/aps.62.124702
    [13] 韩亚伟, 强洪夫, 赵玖玲, 高巍然. 光滑粒子流体动力学方法固壁处理的一种新型排斥力模型.  , 2013, 62(4): 044702. doi: 10.7498/aps.62.044702
    [14] 马理强, 常建忠, 刘汉涛, 刘谋斌. 液滴溅落问题的光滑粒子动力学模拟.  , 2012, 61(5): 054701. doi: 10.7498/aps.61.054701
    [15] 杨斌鑫, 欧阳洁. 黏弹性熔体充模流动诱导残余应力模拟.  , 2012, 61(23): 234602. doi: 10.7498/aps.61.234602
    [16] 左学云, 李中秋, 王伟, 孟利军, 张凯旺, 钟建新. 碳纳米管熔接金电极的分子动力学模拟.  , 2011, 60(6): 066103. doi: 10.7498/aps.60.066103
    [17] 蒋涛, 欧阳洁, 赵晓凯, 任金莲. 黏性液滴变形过程的核梯度修正光滑粒子动力学模拟.  , 2011, 60(5): 054701. doi: 10.7498/aps.60.054701
    [18] 刘谋斌, 常建忠. 光滑粒子动力学方法中粒子分布与数值稳定性分析.  , 2010, 59(6): 3654-3662. doi: 10.7498/aps.59.3654
    [19] 陈 波, 童培庆. 瓮模型中多粒子动力学的研究.  , 2005, 54(12): 5554-5558. doi: 10.7498/aps.54.5554
    [20] 程成, 孙威. 周期自洽的充氢溴化亚铜激光动力学模型.  , 1995, 44(11): 1734-1746. doi: 10.7498/aps.44.1734
计量
  • 文章访问数:  6382
  • PDF下载量:  334
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-12
  • 修回日期:  2014-11-16
  • 刊出日期:  2015-04-05

/

返回文章
返回
Baidu
map