搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金纳米棒三聚体中的等离激元诱导透明

马平平 张杰 刘焕焕 张静 徐永刚 王江 张梦桥 李永放

引用本文:
Citation:

金纳米棒三聚体中的等离激元诱导透明

马平平, 张杰, 刘焕焕, 张静, 徐永刚, 王江, 张梦桥, 李永放

Plasmon induced transparency in the trimer of gold nanorods

Ma Ping-Ping, Zhang Jie, Liu Huan-Huan, Zhang Jing, Xu Yong-Gang, Wang Jiang, Zhang Meng-Qiao, Li Yong-Fang
PDF
导出引用
  • 基于金纳米棒构成的三聚体微元结构模型,详细地研究了等离激元诱导透明(plasmon induced transparency,PIT)现象产生的物理过程.研究发现,三聚体的吸收谱线随着其耦合距离以及尺寸的变化,竖直金纳米棒所对应的偶极明模在平行双长条金纳米棒对应的暗模作用下会产生分裂.依据这一结果提出了一个新的物理解释,PIT现象的产生主要来自于竖直金纳米棒中偶极振荡的模式分裂后的相干叠加.同时,考虑到两个振子之间的耦合会伴随着一定的相位关联性,进而引入了耦合相位因子修正了洛伦兹振子耦合模型,解析地研究了耦合相位因子对吸收谱的调控作用和分裂明模之间的相干叠加效应对PIT效应的影响.这为在纳米尺寸范围设计人造原子、光开关、慢光效应等方面的应用提供了理论参考.
    The localized surface plasmon resonance can be generated on the surface of the nano-metamaterial by the interaction between the nano-metamaterial and the light field, and also many plasmon oscillation modes can occur in the process of the hybridization between many infinitesimal composite structures, which is widely used for adjusting the resonant frequency in the optical frequency domain. Recently, analogue of the electromagnetically induced transparency(EIT) has been realized in the low-loss nano-metamaterial, and is well known as the plasmon induced transparency(PIT). In atomic physics, EIT is an effect which originates from the destructive quantum interference of two different excitation pathways. A sharp dip of nearly ideal transmission can arise within the broad absorption profile, which indicates that the EIT can be used in the fields of slow slight, delay lines and low-loss metamaterial. In this paper, a trimer consisting of a vertical nanorod(serving as a dipole antenna) and two parallel nanorods(used as a quadrupole antenna) is employed to investigate the process mechanism of the PIT in detail. It is found that the vertical nanorod with a large broad linewidth can be strongly coupled with the light. However, the parallel nanorods are weakly coupled with the light and their narrow linewidths are almost from the intrinsic metal loss(Drude damping) that is much smaller than the radiative damping of the dipole antenna. These two antennas can be strongly coupled due to their close similarities. Moreover, the absorption spectra of the trimer obtained by using three-dimensional finite element method vary with its coupling distance and geometry size, and the dipole bright mode corresponding to the dipole antenna splits under the action of the dark mode for the quadrupole antenna. Thus, a fresh physical interpretation is given:the PIT is mainly due to the coherent superposition after the splitting of the dipole oscillation mode in the vertical nanorod, rather than the parallel nanorods. Taking into consideration the phase correlation associated with coupling process of two oscillators, we introduce a modified Lorentzian oscillator model to investigate the effects of the coupling phase factor on the modulation of the absorption spectra and the coherent superposition between the splitting bright modes on the PIT. These findings will provide theoretical references for the applications of artificial atom, optical switching and slow light devices designed in the nanosize range.
      通信作者: 李永放, yfli@snnu.edu.cn
      Corresponding author: Li Yong-Fang, yfli@snnu.edu.cn
    [1]

    Brongersma M L, Kik P G 2007 Surface Plasmon Nanophotonics (Berlin:Springer)

    [2]

    Pacifici D, Lezec H J, Atwater H A 2007 Nat. Photon. 1 402

    [3]

    Linden S, Enkrich C, Wegener M, Zhou J, Koschny T, Soukoulis C M 2004 Science 306 1351

    [4]

    Zhang S, Fan W, Panoiu N C, Malloy K J, Osgood R M, Brueck S R J 2005 Phys. Rev. Lett. 95 137404

    [5]

    Ha T, Enderle T, Ogletree D F, Chemla D S, Selvin P R, Weiss S 1996 Proc. Natl. Acad. Sci. U S A 93 6264

    [6]

    Nie S, Emory S R 1997 Science 275 1102

    [7]

    Butet J, Martin O J F 2014 Opt. Express 22 29693

    [8]

    Butet J, Dutta-Gupta S, Martin O J F 2014 Phys. Rev. B 89 245449

    [9]

    Thyagarajan K, Butet J, Martin O J F 2013 Nano Lett. 13 1847

    [10]

    Li J, Liu T, Zheng H, Dong J, He E, Gao W, Wu Y 2014 Plasmonics 9 1439

    [11]

    Hao F, Sonnefraud Y, Dorpe P V, Maier S A, Halas N J, Nordlander P 2008 Nano Lett. 8 3983

    [12]

    Jain P K, Huang X, El-Sayed I H, El-Sayed M A 2007 Plasmonics 2 107

    [13]

    Dong Z G, Liu H, Cao J X, Li T, Wang S M, Zhu S N, Zhang X 2010 Appl. Phys. Lett. 97 114101

    [14]

    Liu N, Weiss T, Mesch M, Langguth L, Eigenthaler U, Hirscher M, Giessen H 2009 Opt. Express 17 15372

    [15]

    Artar A, Yanik A A, Altug H 2011 Nano Lett. 11 1685

    [16]

    Sadeghi S M, Deng L, Li X, Huang W P 2009 Nanotechnology 20 365401

    [17]

    Wang W, Li Y, Xu P, Chen Z, Chen J, Qian J, Xu J 2014 J. Opt. 16 125013

    [18]

    Chen J, Wang P, Chen C, Lu Y, Ming H, Zhan Q 2011 Opt. Express 19 5970

    [19]

    Harris S E 2008 Phys. Today 50 36

    [20]

    Ham B S, Shahriar M S, Hemmer P R 1997 Opt. Lett. 22 1138

    [21]

    Phillips M, Wang H 2002 Phys. Rev. Lett. 89 186401

    [22]

    Maleki L, Matsko A B, Savchenkov A A, Ilchenko V S 2004 Opt. Lett. 29 626

    [23]

    Ham B S, Hahn J 2009 Appl. Phys. Lett. 94 101110

    [24]

    Gan Q, Fu Z, Ding Y J, Bartoli F J 2008 Phys. Rev. Lett 100 256803

    [25]

    Wang G, Lu H, Liu X 2012 Appl. Phys. Lett. 101 013111

    [26]

    Wei H, Wang Z, Tian X, Käll M, Xu H 2011 Nat. Commun. 2 387

    [27]

    Totsuka K, Kobayashi N, Tomita M 2007 Phys. Rev. Lett. 98 213904

    [28]

    Xu H, Ham B S 2008 Phys. Rev. Lett. 101 047401

    [29]

    Johnson P B, Christy R W 1972 Phys. Rev. B 6 4370

    [30]

    Liu T, Li J, Gao F, Han Q, Liu S 2013 Europhys. Lett. 104 47009

    [31]

    Mhlschlegel P, Eisler H J, Martin O J F, Hecht, Pohl D W 2005 Science 308 1607

    [32]

    Xu H, Lu Y, Lee Y, Ham B S 2010 Opt. Express 18 17736

  • [1]

    Brongersma M L, Kik P G 2007 Surface Plasmon Nanophotonics (Berlin:Springer)

    [2]

    Pacifici D, Lezec H J, Atwater H A 2007 Nat. Photon. 1 402

    [3]

    Linden S, Enkrich C, Wegener M, Zhou J, Koschny T, Soukoulis C M 2004 Science 306 1351

    [4]

    Zhang S, Fan W, Panoiu N C, Malloy K J, Osgood R M, Brueck S R J 2005 Phys. Rev. Lett. 95 137404

    [5]

    Ha T, Enderle T, Ogletree D F, Chemla D S, Selvin P R, Weiss S 1996 Proc. Natl. Acad. Sci. U S A 93 6264

    [6]

    Nie S, Emory S R 1997 Science 275 1102

    [7]

    Butet J, Martin O J F 2014 Opt. Express 22 29693

    [8]

    Butet J, Dutta-Gupta S, Martin O J F 2014 Phys. Rev. B 89 245449

    [9]

    Thyagarajan K, Butet J, Martin O J F 2013 Nano Lett. 13 1847

    [10]

    Li J, Liu T, Zheng H, Dong J, He E, Gao W, Wu Y 2014 Plasmonics 9 1439

    [11]

    Hao F, Sonnefraud Y, Dorpe P V, Maier S A, Halas N J, Nordlander P 2008 Nano Lett. 8 3983

    [12]

    Jain P K, Huang X, El-Sayed I H, El-Sayed M A 2007 Plasmonics 2 107

    [13]

    Dong Z G, Liu H, Cao J X, Li T, Wang S M, Zhu S N, Zhang X 2010 Appl. Phys. Lett. 97 114101

    [14]

    Liu N, Weiss T, Mesch M, Langguth L, Eigenthaler U, Hirscher M, Giessen H 2009 Opt. Express 17 15372

    [15]

    Artar A, Yanik A A, Altug H 2011 Nano Lett. 11 1685

    [16]

    Sadeghi S M, Deng L, Li X, Huang W P 2009 Nanotechnology 20 365401

    [17]

    Wang W, Li Y, Xu P, Chen Z, Chen J, Qian J, Xu J 2014 J. Opt. 16 125013

    [18]

    Chen J, Wang P, Chen C, Lu Y, Ming H, Zhan Q 2011 Opt. Express 19 5970

    [19]

    Harris S E 2008 Phys. Today 50 36

    [20]

    Ham B S, Shahriar M S, Hemmer P R 1997 Opt. Lett. 22 1138

    [21]

    Phillips M, Wang H 2002 Phys. Rev. Lett. 89 186401

    [22]

    Maleki L, Matsko A B, Savchenkov A A, Ilchenko V S 2004 Opt. Lett. 29 626

    [23]

    Ham B S, Hahn J 2009 Appl. Phys. Lett. 94 101110

    [24]

    Gan Q, Fu Z, Ding Y J, Bartoli F J 2008 Phys. Rev. Lett 100 256803

    [25]

    Wang G, Lu H, Liu X 2012 Appl. Phys. Lett. 101 013111

    [26]

    Wei H, Wang Z, Tian X, Käll M, Xu H 2011 Nat. Commun. 2 387

    [27]

    Totsuka K, Kobayashi N, Tomita M 2007 Phys. Rev. Lett. 98 213904

    [28]

    Xu H, Ham B S 2008 Phys. Rev. Lett. 101 047401

    [29]

    Johnson P B, Christy R W 1972 Phys. Rev. B 6 4370

    [30]

    Liu T, Li J, Gao F, Han Q, Liu S 2013 Europhys. Lett. 104 47009

    [31]

    Mhlschlegel P, Eisler H J, Martin O J F, Hecht, Pohl D W 2005 Science 308 1607

    [32]

    Xu H, Lu Y, Lee Y, Ham B S 2010 Opt. Express 18 17736

  • [1] 王悦, 王伦, 孙柏逊, 郎鹏, 徐洋, 赵振龙, 宋晓伟, 季博宇, 林景全. 表面等离激元与入射光共同作用下的金纳米结构近场调控.  , 2023, 72(17): 175202. doi: 10.7498/aps.72.20230514
    [2] 胡宝晶, 黄铭, 黎鹏, 杨晶晶. 基于black phosphorus纳米棒耦合的等离激元诱导透明.  , 2021, 70(4): 044201. doi: 10.7498/aps.70.20201331
    [3] 褚培新, 张玉斌, 陈俊学. 开口狭缝调制的耦合微腔中表面等离激元诱导透明特性.  , 2020, 69(13): 134205. doi: 10.7498/aps.69.20200369
    [4] 胡宝晶, 黄铭, 黎鹏, 杨晶晶. 基于纳米金属-石墨烯耦合的多频段等离激元诱导透明.  , 2020, 69(17): 174201. doi: 10.7498/aps.69.20200200
    [5] 胡宝晶, 黄铭, 黎鹏, 杨成福. 基于纳米盘棒耦合的多频段等离激元诱导透明研究.  , 2020, 69(13): 134202. doi: 10.7498/aps.69.20200093
    [6] 李盼. 表面等离激元纳米聚焦研究进展.  , 2019, 68(14): 146201. doi: 10.7498/aps.68.20190564
    [7] 李爱云, 张兴坊, 刘凤收, 闫昕, 梁兰菊. 对称纳米棒三聚体结构的Fano共振特性研究.  , 2019, 68(19): 197801. doi: 10.7498/aps.68.20190978
    [8] 王文慧, 张孬. 银纳米线表面等离激元波导的能量损耗.  , 2018, 67(24): 247302. doi: 10.7498/aps.67.20182085
    [9] 赵军龙, 张译丹, 杨名. 噪声对一种三粒子量子探针态的影响.  , 2018, 67(14): 140302. doi: 10.7498/aps.67.20180040
    [10] 王雯洁, 王甲富, 闫明宝, 鲁磊, 马华, 屈绍波, 陈红雅, 徐翠莲. 基于多阶等离激元谐振的超薄多频带超材料吸波体.  , 2014, 63(17): 174101. doi: 10.7498/aps.63.174101
    [11] 尹海峰, 张红, 岳莉. C60富勒烯二聚物的等离激元激发.  , 2014, 63(12): 127303. doi: 10.7498/aps.63.127303
    [12] 张兴坊, 闫昕. 金纳米球壳表面等离激元共振波长调谐特性研究.  , 2013, 62(3): 037805. doi: 10.7498/aps.62.037805
    [13] 朱华, 颜振东, 詹鹏, 王振林. 局域表面等离激元诱导的三次谐波增强效应.  , 2013, 62(17): 178104. doi: 10.7498/aps.62.178104
    [14] 丛超, 吴大建, 刘晓峻, 李勃. 金银三层纳米管局域表面等离激元共振特性研究.  , 2012, 61(3): 037301. doi: 10.7498/aps.61.037301
    [15] 邹伟博, 周骏, 金理, 张昊鹏. 金纳米球壳对的局域表面等离激元共振特性分析.  , 2012, 61(9): 097805. doi: 10.7498/aps.61.097805
    [16] 丛超, 吴大建, 刘晓峻. 椭圆截面金纳米管的局域表面等离激元共振特性研究.  , 2011, 60(4): 046102. doi: 10.7498/aps.60.046102
    [17] 李琴, 郭红. 宽频脉冲光的传播特性.  , 2011, 60(5): 054204. doi: 10.7498/aps.60.054204
    [18] 左言磊, 魏晓峰, 朱启华, 刘红婕, 王 逍, 黄 征, 郭 仪, 应纯同. 基于配对误差补偿方法的拼接光栅压缩池理论研究.  , 2007, 56(9): 5227-5232. doi: 10.7498/aps.56.5227
    [19] 王晓, 蔡建华. 三维紧束缚电子气的等离激元理论.  , 1993, 42(7): 1149-1156. doi: 10.7498/aps.42.1149
    [20] 王晓;蔡建华. 三维紧束缚电子气的等离激元理论.  , 1991, 40(7): 1149-1156. doi: 10.7498/aps.40.1149
计量
  • 文章访问数:  5729
  • PDF下载量:  303
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-30
  • 修回日期:  2016-08-05
  • 刊出日期:  2016-11-05

/

返回文章
返回
Baidu
map