搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于black phosphorus纳米棒耦合的等离激元诱导透明

胡宝晶 黄铭 黎鹏 杨晶晶

引用本文:
Citation:

基于black phosphorus纳米棒耦合的等离激元诱导透明

胡宝晶, 黄铭, 黎鹏, 杨晶晶

Plasmon-induced transparency based on black phosphorus nanorods hybrid model

Hu Bao-Jing, Huang Ming, Li Peng, Yang Jing-Jing
PDF
HTML
导出引用
  • 提出了基于black phosphorus(BP)纳米棒耦合的多频段等离激元诱导透明(PIT)电磁模型, 通过FDTD和辐射双振荡器(RTO)模型从数值计算和理论研究两方面分析了模型的电磁特性. 结果表明: 由于不同长度的BP纳米棒之间的明-明耦合, 可以在实现单频段PIT效应的基础之上, 进一步产生双频段和三频段的PIT效应. 其次, 通过改变BP的弛豫速率${n_{\rm{s}}}$, 可以在单频段、双频段、三频段PIT模型中同时实现透明窗谐振频率的可调性. 当${n_{\rm{s}}}$增大时, 各频段PIT窗口的谐振频率将会逐渐增大, 发生蓝移. 进一步研究了单频段PIT模型的传感特性, 该模型随背景材料折射率变化的灵敏度(sensitivity)达到了6110.6 (nm/RIU), 优值系数(FOM)达到了7.39 (1/RIU)这为多频带滤波、超灵敏传感器的设计提供了理论参考.
    In this paper, we propose three plasmon-induced transparency(PIT) hybrid models based on the coupling of black phosphorus (BP) nanorods. By using the bright-bright mode coupling between BP nanorods with different lengths, and according to the weak hybrid effect after the detuning of each bright mode unit, we can trigger the single-band, dual-band and triple-band PIT effects. Secondly, by changing the relaxation rate of BP, the resonant frequency can be adjusted in each PIT model. When the relaxation rate of BP changes from small to large, the resonance frequencies of the transparent windows in those three PIT models all increase and the blue shifts occur. In a single-band PIT model, when the relaxation rate of BP changes from $0.8 \times {10^{ - 14}}$ to $1.4 \times {10^{ - 14}}\;{{\rm{cm}}^{ - 2}}$, the resonant frequency of transparent window increases 7.5628 THz. In a dual-band PIT model, under the same change of relaxation rate, the resonant frequencies of the two transparent windows increase 6.8593 and 9.1457 THz, at the same time, and the resonant frequencies of the three transparent windows in triple-band PIT model increase 6.8593, 8.7939 and 11.2563 THz respectively. In addition to the resonant frequency, the transmittance at the dip frequency in each model gradually decreases, and the depth of depression gradually increases. Finally, the sensing characteristics of the single-band PIT model are further studied. When the refractive index of the background changes from small to large, the dip frequency and the resonant frequency of the transparent window will be significantly red-shifted. The change of frequency is approximately linear with refractive index. The model has a sensitivity of 6110.6 (nm/RIU) and a figure of merit of 7.39 (1/RIU) which is better than the same type of sensor. This model provides a theoretical reference for designing the multiband filtering and ultrasensitive sensors.
      通信作者: 黄铭, huangming@ynu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61461052, 11564044, 61863035)和云南省教育厅科学研究基金(批准号: 2019J0172, 2020J0005)资助的课题
      Corresponding author: Huang Ming, huangming@ynu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61461052, 11564044, 61863035) and the Science Research Foundation of the Education Department of Yunnan Province, China (Grant Nos. 2019J0172, 2020J0005)
    [1]

    Alp A, Ahmet A, Hatice A 2011 Nano Lett. 11 1685Google Scholar

    [2]

    Li H J, Wang L L, Liu J Q 2013 Appl. Phys. Lett. 103 211104Google Scholar

    [3]

    Liu N, Langguth L, Weiss T 2009 Nat. Mater. 8 9Google Scholar

    [4]

    Papasimakis N, Fu Y H, Fedotov V A 2009 Appl. Phys. Lett. 94 211902Google Scholar

    [5]

    Safavi A H, Mayer T P, Ch an 2011 Nature 472 7341

    [6]

    Qin M, Wang L L, Zhai X 2018 IEEE Photonics Technol. Lett. 30 11Google Scholar

    [7]

    Wang H, Wang X, Xia F 2014 Nano Lett. 14 6424Google Scholar

    [8]

    Buscema M, Groenendijk D J, Blanter S I 2014 Nano Lett. 14 3347Google Scholar

    [9]

    Deng Y, Luo Z, Conrad N J 2014 ACS Nano 8 8292Google Scholar

    [10]

    Buscema M, Groenendijk D J, Steele G A 2014 Nat. Commun. 5 4651Google Scholar

    [11]

    Engel M, Steiner M, Avouris P 2014 Nano Lett. 14 6414Google Scholar

    [12]

    Du Y, Ouyang C, Shi S 2010 J. Appl. Phys. 107 093718Google Scholar

    [13]

    Prytz O, Flage L E 2010 J. Phys. Condens. Matter 22 015502Google Scholar

    [14]

    Qiao J, Kong X, Hu Z 2014 Nat. Commun. 5 4475Google Scholar

    [15]

    Wang X, Lan S 2016 Adv. Opt. Photonics 8 618Google Scholar

    [16]

    Huang Y, Liu Y, Fang C Z 2020 Opt. Mater. Express 10 14Google Scholar

    [17]

    Fo Q Q, Ling P, Chen X Y 2018 IEEE Photonics J. 10 4500709

    [18]

    Liu Z Z, Aydin K 2016 Nano Lett. 1 1

    [19]

    Nong J P, Wei W, Wang W 2018 Opt. Express 26 1633Google Scholar

    [20]

    Liu C, Li H J, Xu H 2019 J. Phys. D: Appl. Phys. 52 120137

    [21]

    Li H, Wang L, Xing H Z 2019 Opt. Mater. Express 8 352

    [22]

    Jia Z P, Huang L, Su J B 2020 Appl. Phys. Express 13 104027

    [23]

    Deng Z L, Fu T, Zheng B 2016 Appl. Phys. Lett. 108 081109Google Scholar

    [24]

    Deng Z L, Deng H, Zhuang X 2018 Nano Lett. 18 2885Google Scholar

    [25]

    Deng Z L, Jin M K, Ye X 2020 Adv. Funct. Mater. 1 1910610

    [26]

    Cen H F, Wang F Q, Liang R S 2018 Opt. Commun. 420 78Google Scholar

    [27]

    Hu X G, Yuan S, Armghan A 2017 J. Phys. D Appl. Phys. 50 025301Google Scholar

    [28]

    Wang J, Jiang Y N 2017 Opt. Express 25 5206Google Scholar

    [29]

    Liu Y, Zhong R B, Lian Z 2018 Sci. Rep. 8 2828Google Scholar

    [30]

    Liu C, Li H J, Xu H 2020 New J. Phys. 1 111962

  • 图 1  单频段PIT模型结构图 (a) 三维空间结构图; (b) 二维平面结构图

    Fig. 1.  Schematic diagram of single-band PIT model: (a) Three-dimensional space schematic; (b) two-dimensional plane schematic.

    图 2  BP原子结构和介电常数示意图 (a) BP错列原子结构示意图; (b) ${\varepsilon _{xx}}$实部随${n_{\rm{s}}}$的变化规律; (c) ${\varepsilon _{xx}}$虚部随${n_{\rm{s}}}$的变化规律; (d) ${\varepsilon _{yy}}$实部随${n_{\rm{s}}}$的变化规律; (e) ${\varepsilon _{yy}}$虚部随${n_{\rm{s}}}$的变化规律

    Fig. 2.  Schematic diagrams of BP atomic structure and dielectric constant: (a) The staggered atomic structure of BP; (b) variations of the real part of ${\varepsilon _{xx}}$ with different ${n_{\rm{s}}}$; (c) variations of the imaginary part of ${\varepsilon _{xx}}$ with different ${n_{\rm{s}}}$; (d) variations of the real part of ${\varepsilon _{yy}}$ with different ${n_{\rm{s}}}$; (e) variations of the imaginary part of ${\varepsilon _{yy}}$ with different ${n_{\rm{s}}}$.

    图 3  单BP纳米棒谐振器、单频段PIT模型的透射曲线透射曲线

    Fig. 3.  Transmission spectra of the sole BP rods array, and the single-band PIT model.

    图 4  单频段PIT模型在dip A, dip B和peak的电场分布 (a) dip A; (b) dip B; (c) peak

    Fig. 4.  Distributions of electric field of single-band PIT model at: (a) dip A; (b) dip B; (c) peak.

    图 5  ${n_{\rm{s}}}$$0.8 \times {10^{ - 14}}\;{\rm{c}}{{\rm{m}}^{ - 2}}$变化到$1.4 \times {10^{ - 14}}\;{\rm{c}}{{\rm{m}}^{ - 2}}$时, 单频段PIT模型透射谱变化规律及其与RTO拟合结果比较

    Fig. 5.  Variations law of transmission spectrum of single-band PIT model and comparison with RTO fitting results when the ${n_{\rm{s}}}$ is changed from $0.8 \times {10^{ - 14}}$ to $1.4 \times {10^{ - 14}}\;{\rm{c}}{{\rm{m}}^{ - 2}}$

    图 6  单频段PIT模型不同背景折射率下的透射窗对比

    Fig. 6.  The variation of transmission windows with different background index in single-band PIT model.

    图 7  单频段PIT模型中dip A, dip B和peak随背景折射率的变化规律

    Fig. 7.  The variations of dip A, dip B and peak with different background index.

    图 8  双频段和三频段PIT模型二维结构图 (a) 双频段模型二维结构图; (b) 三频段模型二维结构图

    Fig. 8.  Two-dimensional plane schematic diagram of dual-band and triple-band PIT models: (a) Two-dimensional plane schematic of dual-band PIT model; (b) two-dimensional plane schematic of triple-band PIT model.

    图 9  双频段和三频段PIT的透射谱曲线 (a) 双频段PIT的透射谱曲线; (b) 三频段PIT的透射谱曲线

    Fig. 9.  Transmission spectra of dual-band PIT and triple-band models: (a) Transmission spectra of dual-band PIT model; (b) transmission spectra of triple-band PIT model.

    图 10  ${n_{\rm{s}}}$$0.8 \times {10^{ - 14}}\;{\rm{c}}{{\rm{m}}^{ - 2}}$变化到$1.4 \times {10^{ - 14}}\;{\rm{c}}{{\rm{m}}^{ - 2}}$时双频段PIT模型透射谱变化规律

    Fig. 10.  Variation law of transmission spectrum of dual-band PIT model when the ${n_{\rm{s}}}$ is changed from $0.8 \times {10^{ - 14}}$ to $1.4 \times {10^{ - 14}}\;{\rm{c}}{{\rm{m}}^{ - 2}}$.

    图 11  ${n_{\rm{s}}}$$0.8 \times {10^{ - 14}}\;{\rm{c}}{{\rm{m}}^{ - 2}}$变化到$1.4 \times {10^{ - 14}}\;{\rm{c}}{{\rm{m}}^{ - 2}}$时三频段PIT模型透射谱变化规律

    Fig. 11.  Variation law of transmission spectrum of triple-band PIT model when the ${n_{\rm{s}}}$ is changed from $0.8 \times {10^{ - 14}}$ to $1.4 \times {10^{ - 14}}\;{\rm{c}}{{\rm{m}}^{ - 2}}$.

    图 12  双频段PIT模型在 (a) dip A, (b) dip B, (c) dip C, (d) peak I和(e) peak II的电场分布

    Fig. 12.  Distribution of electric field of dual-band PIT model at (a) dip A, (b) dip B, (c) dip C, (d) peak I nd (e) peak II.

    图 13  三频段PIT模型在 (a) dip A, (b) dip B, (c) dip C, (d) dip D, (e) peak I, (f) peak II和(g) peak III的电场分布

    Fig. 13.  Distributions of electric field of dual-band PIT model at (a) dip A, (b) dip B, (c) dip C, (d) dip D, (e) peak I, (f) peak II and (g) peak III.

    表 1  单频段PIT模型中dip A, dip B和peak的优值系数和灵敏度大小

    Table 1.  FOM and Sensitivity of dip A, dip B, and peak in the single-band PIT model.

    FOM/RIU–1Sensitivity/nm·RIU–1
    dip A2.3856110.6
    dip B3.084018.7
    peak7.394806.8
    下载: 导出CSV
    Baidu
  • [1]

    Alp A, Ahmet A, Hatice A 2011 Nano Lett. 11 1685Google Scholar

    [2]

    Li H J, Wang L L, Liu J Q 2013 Appl. Phys. Lett. 103 211104Google Scholar

    [3]

    Liu N, Langguth L, Weiss T 2009 Nat. Mater. 8 9Google Scholar

    [4]

    Papasimakis N, Fu Y H, Fedotov V A 2009 Appl. Phys. Lett. 94 211902Google Scholar

    [5]

    Safavi A H, Mayer T P, Ch an 2011 Nature 472 7341

    [6]

    Qin M, Wang L L, Zhai X 2018 IEEE Photonics Technol. Lett. 30 11Google Scholar

    [7]

    Wang H, Wang X, Xia F 2014 Nano Lett. 14 6424Google Scholar

    [8]

    Buscema M, Groenendijk D J, Blanter S I 2014 Nano Lett. 14 3347Google Scholar

    [9]

    Deng Y, Luo Z, Conrad N J 2014 ACS Nano 8 8292Google Scholar

    [10]

    Buscema M, Groenendijk D J, Steele G A 2014 Nat. Commun. 5 4651Google Scholar

    [11]

    Engel M, Steiner M, Avouris P 2014 Nano Lett. 14 6414Google Scholar

    [12]

    Du Y, Ouyang C, Shi S 2010 J. Appl. Phys. 107 093718Google Scholar

    [13]

    Prytz O, Flage L E 2010 J. Phys. Condens. Matter 22 015502Google Scholar

    [14]

    Qiao J, Kong X, Hu Z 2014 Nat. Commun. 5 4475Google Scholar

    [15]

    Wang X, Lan S 2016 Adv. Opt. Photonics 8 618Google Scholar

    [16]

    Huang Y, Liu Y, Fang C Z 2020 Opt. Mater. Express 10 14Google Scholar

    [17]

    Fo Q Q, Ling P, Chen X Y 2018 IEEE Photonics J. 10 4500709

    [18]

    Liu Z Z, Aydin K 2016 Nano Lett. 1 1

    [19]

    Nong J P, Wei W, Wang W 2018 Opt. Express 26 1633Google Scholar

    [20]

    Liu C, Li H J, Xu H 2019 J. Phys. D: Appl. Phys. 52 120137

    [21]

    Li H, Wang L, Xing H Z 2019 Opt. Mater. Express 8 352

    [22]

    Jia Z P, Huang L, Su J B 2020 Appl. Phys. Express 13 104027

    [23]

    Deng Z L, Fu T, Zheng B 2016 Appl. Phys. Lett. 108 081109Google Scholar

    [24]

    Deng Z L, Deng H, Zhuang X 2018 Nano Lett. 18 2885Google Scholar

    [25]

    Deng Z L, Jin M K, Ye X 2020 Adv. Funct. Mater. 1 1910610

    [26]

    Cen H F, Wang F Q, Liang R S 2018 Opt. Commun. 420 78Google Scholar

    [27]

    Hu X G, Yuan S, Armghan A 2017 J. Phys. D Appl. Phys. 50 025301Google Scholar

    [28]

    Wang J, Jiang Y N 2017 Opt. Express 25 5206Google Scholar

    [29]

    Liu Y, Zhong R B, Lian Z 2018 Sci. Rep. 8 2828Google Scholar

    [30]

    Liu C, Li H J, Xu H 2020 New J. Phys. 1 111962

  • [1] 杨其利, 张兴坊, 刘凤收, 闫昕, 梁兰菊. 劈裂环-盘二聚体结构的多重Fano共振.  , 2022, 71(2): 027802. doi: 10.7498/aps.71.20210855
    [2] 熊磊, 丁洪伟, 李光元. 银纳米粒子阵列中衍射诱导高品质因子的四偶极晶格等离子体模式.  , 2022, 71(4): 047802. doi: 10.7498/aps.71.20211629
    [3] 熊磊. 银纳米粒子阵列中衍射诱导高品质因子的四偶极晶格等离子体共振.  , 2021, (): . doi: 10.7498/aps.70.20211629
    [4] 胡宝晶, 黄铭, 黎鹏, 杨成福. 基于纳米盘棒耦合的多频段等离激元诱导透明研究.  , 2020, 69(13): 134202. doi: 10.7498/aps.69.20200093
    [5] 胡宝晶, 黄铭, 黎鹏, 杨晶晶. 基于纳米金属-石墨烯耦合的多频段等离激元诱导透明.  , 2020, 69(17): 174201. doi: 10.7498/aps.69.20200200
    [6] 马平平, 张杰, 刘焕焕, 张静, 徐永刚, 王江, 张梦桥, 李永放. 金纳米棒三聚体中的等离激元诱导透明.  , 2016, 65(21): 217801. doi: 10.7498/aps.65.217801
    [7] 朱小敏, 任新成, 郭立新. 指数型粗糙地面与上方矩形截面柱宽带电磁散射的时域有限差分法研究.  , 2014, 63(5): 054101. doi: 10.7498/aps.63.054101
    [8] 刘建晓, 张郡亮, 苏明敏. 基于时域有限差分法的各向异性铁氧体圆柱电磁散射分析.  , 2014, 63(13): 137501. doi: 10.7498/aps.63.137501
    [9] 任新成, 郭立新, 焦永昌. 雪层覆盖的粗糙地面与上方矩形截面柱复合电磁散射的时域有限差分法研究.  , 2012, 61(14): 144101. doi: 10.7498/aps.61.144101
    [10] 丁世敬, 葛德彪, 申宁. 复合介质等效电磁参数的数值研究.  , 2010, 59(2): 943-948. doi: 10.7498/aps.59.943
    [11] 亓丽梅, 杨梓强, 兰峰, 高喜, 史宗君, 梁正. 二维色散和各向异性磁化等离子体光子晶体色散特性研究.  , 2010, 59(1): 351-359. doi: 10.7498/aps.59.351
    [12] 高国钦, 马守林, 金峰, 金东范, 卢天健. 声波在二维固/流声子晶体中的禁带特性研究.  , 2010, 59(1): 393-400. doi: 10.7498/aps.59.393
    [13] 吴振军, 王丽芳, 廖承林. 分析端接频变负载的多导体传输线FDTD新方法.  , 2009, 58(9): 6146-6151. doi: 10.7498/aps.58.6146
    [14] 章海锋, 马力, 刘少斌. 磁化等离子体光子晶体缺陷态的研究.  , 2009, 58(2): 1071-1076. doi: 10.7498/aps.58.1071
    [15] 项 阳, 钱祖平, 刘 贤, 鲍峻松. 基于Drude-FDTD算法的单负介质组合填充波导传播特性研究.  , 2008, 57(9): 5537-5541. doi: 10.7498/aps.57.5537
    [16] 王慧琴, 刘正东, 王 冰. 同材质颗粒不同填充密度的随机介质中光场的空间分布.  , 2008, 57(4): 2186-2191. doi: 10.7498/aps.57.2186
    [17] 王 宏, 欧阳征标, 韩艳玲, 孟庆生, 罗贤达, 刘劲松. 随机性对部分随机介质激光器阈值的影响.  , 2007, 56(5): 2616-2622. doi: 10.7498/aps.56.2616
    [18] 闫长春, 薛国刚, 刘 诚, 陈 浩, 崔一平. 产生纳米级暗中空光束的方法研究.  , 2007, 56(1): 160-164. doi: 10.7498/aps.56.160
    [19] 刘少斌, 朱传喜, 袁乃昌. 等离子体光子晶体的FDTD分析.  , 2005, 54(6): 2804-2808. doi: 10.7498/aps.54.2804
    [20] 周 梅, 陈效双, 徐 靖, 曾 勇, 吴砚瑞, 陆 卫, 王连卫, 陈 瑜. 中红外波段硅基两维光子晶体的光子带隙.  , 2005, 54(1): 411-415. doi: 10.7498/aps.54.411
计量
  • 文章访问数:  4585
  • PDF下载量:  94
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-14
  • 修回日期:  2020-09-07
  • 上网日期:  2021-02-03
  • 刊出日期:  2021-02-20

/

返回文章
返回
Baidu
map