搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

回音壁微腔光力系统的相干控制与完全相干透射

陆赫林 杜春光

引用本文:
Citation:

回音壁微腔光力系统的相干控制与完全相干透射

陆赫林, 杜春光

Coherent control of whispering-gallery-mode optomechanical microresonators and perfect transparency

Lu He-Lin, Du Chun-Guang
PDF
导出引用
  • 本文研究了两侧同时输入的回音壁模谐振双微腔光力系统中电磁诱导透明的相干调控.通过改变双微腔两侧探测场的强度比值及相位差,可以有效控制电磁诱导透明窗口的宽度和深度,对探测场的吸收和色散等性质实施显著的影响,并且能够在特殊频率处产生关于探测场的完全相干透射现象.
    Cavity-optomechanics has emerged as a new interdisciplinary research field,which studies the interaction between light field and mechanical systems of micro-and nanoscale.It is a promising avenue to solid-state quantum optics and has potential applications in high sensitivity measurement of weak force,tiny displacement and mass,and quantum information science.As a solid-state system of quantum optics,it has many interesting coherent phenomena,such as optomechanically induced transparency (OMIT),which is the optomechanical analog of the well-known phenomenon of electromagnetically induced transparency (EIT).However,due to diversity in structure,OMIT systems must have many new phenomena which do not exist in ordinary EIT systems.On the other hand,whispering-gallery-mode (WGM) microresonators have been investigated extensively.WGM microresonators have a wide range of applications due to their high quality factors and microscale mode volumes.WGM microresonators can also be used for OMIT systems,which have been investigated extensively.In this paper,we study the coherent control of an double-cavity optomechanical system which is composed of two WGM microresonators.We assume that the two WGM microcavties are driven by two strong control fields and two weak probe fields,and,one of the two cavities can create a macroscopic mechanical breathing mode under the action of a radiation pressure force.We also assume that the two WGM microcavties are directly coupled by an evanescent field.We theoretically study the quantum coherent control of electromagnetically induced transparency in this system,and find that in contrast with ordinary EIT systems,there are many new properties in this OMIT system, for example if two control fields with appropriate amplitudes and detunings are used to drive the system,the probe field, which is input to one of the two cavities,will be completely output from the other cavity,i.e.,the perfect transparency of the quantum coherence phenomenon can occur in this system.We also find that the electromagnetically induced transparency can be realized and controlled in this optomechanical system by adjusting the relative intensity and the relative phase between the two input probe fields,and the width and depth of the EIT window are sensitive to the relative intensity of the two control fields,which may be used for switching between fast and slow light.These results indicate important progress toward signal amplification,light storage,fast light,and slow light in quantum information processes.Considering the fact that WGM microresonators are the frontier research subjects ranging from biosensing, nonlinear optics,and laser physics,to fundamental physics such as cavity quantum electrodynamics,we believe that the results in this paper have a wide range of applications.
      通信作者: 杜春光, ducg@mail.tsinghua.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11274197,91221205)资助的课题.
      Corresponding author: Du Chun-Guang, ducg@mail.tsinghua.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China(Grant Nos. 11274197, 91221205).
    [1]

    Kippenberg T J, Vahala K J 2008 Science 321 1172

    [2]

    Verlot P, Tavernarakis A, Briant T, Cohadon P F, Heidmann A 2010 Phys. Rev. Lett. 104 133602

    [3]

    Mahajan S, Kumar T, Bhattacherjee A B, ManMohan 2013 Phys. Rev. A 87 013621

    [4]

    Gigan S, Böhm H R, Paternostro M, Blaser F, Langer G, Hertzberg J B, Schwab K C, Böuerle D, Aspelmeyer N M, Zeilinger A 2006 Nature 444 67

    [5]

    Kleckner D, Bouwmeester D 2006 Nature 444 75

    [6]

    Kippenberg T J, Vahala K J 2007 Opt. Express 15 17172

    [7]

    Armani D K, Kippenberg T J, Spillane S M, Vahala K J 2003 Nature 421 925

    [8]

    Gorodetsky M L, Savchenkov A A 1996 Opt. Lett. 21 453

    [9]

    Grudinin I S, Ilchenko V S, Maleki L 2006 Phys. Rev. A 74 063806

    [10]

    Ilchenko V S, Savchenkov A A, Matsko A B, Maleki L 2004 Phys. Rev. Lett. 92 043903

    [11]

    Anetsberger G, Arcizet O, Unterreithmeier Q P, Rivière R, Schliesser A, Weig E M, Kotthaus J P, Kippenberg T J 2009 Nat. Phys. 5 909

    [12]

    Gröblacher S, Hertzberg J B, Vanner M R, Cole G D, Gigan S, Schwab K C, Aspelmeyer M 2009 Nat. Phys. 5 485

    [13]

    O'Connell A D, Hofheinz M, Ansmann M, Bialczak R C, Lenander M, Lucero E, Neeley M, Sank D, Wang H, Weiges M, Wenner J, Martinis J M, Cleland A N 2010 Nature 464 697

    [14]

    Chan J, Alegre T P M, Safavi-Naeini A H, Hill J T, Krause A, Gröblacher S, Aspelmeyer M, Painter O 2011 Nature 478 89

    [15]

    Huang S, Agarwal G S 2009 Phys. Rev. A 80 033807

    [16]

    Agarwal G S, Huang S 2010 Phys. Rev. A 81 041803

    [17]

    Safavi-Naeini A H, Alegre T P M, Chan J, Eichenfield M, Winger M, Lin Q, Hill J T, Chang D E, Painter O 2011 Nature 472 69

    [18]

    Wang Y D, Clerk A A 2013 Phys. Rev. Lett. 110 253601

    [19]

    Komar P, Bennett S D, Stannigel K, Habraken S J M, Rbl P, Zoller P, Lukin M D 2013 Phys. Rev. A 87 013839

    [20]

    Totsuka K, Tomita M 2006 J. Opt. Soc. Am. B 23 2194

    [21]

    Totsuka K, Tomita M 2007 Phys. Rev. E 75 016610

    [22]

    Agarwal G S, Huang S 2014 New J. Phys. 16 033023

    [23]

    Yan X B, Gu K H, Fu C B, Cui C L, Wang R, Wu J H 2014 Eur. Phys. J. D 68 126

    [24]

    Yan X B, Gu K H, Fu C B, Cui C L, Wang R, Wu J H 2014 Chin. Phys. B 23 114201

    [25]

    Lei F C, Gao M, Du C G, Jing Q L, Long G L 2015 Opt. Express 23 11508

    [26]

    Walls D F, Milburn G J 2008 Quantum Optics (Berlin:Springer Press) pp127-138

  • [1]

    Kippenberg T J, Vahala K J 2008 Science 321 1172

    [2]

    Verlot P, Tavernarakis A, Briant T, Cohadon P F, Heidmann A 2010 Phys. Rev. Lett. 104 133602

    [3]

    Mahajan S, Kumar T, Bhattacherjee A B, ManMohan 2013 Phys. Rev. A 87 013621

    [4]

    Gigan S, Böhm H R, Paternostro M, Blaser F, Langer G, Hertzberg J B, Schwab K C, Böuerle D, Aspelmeyer N M, Zeilinger A 2006 Nature 444 67

    [5]

    Kleckner D, Bouwmeester D 2006 Nature 444 75

    [6]

    Kippenberg T J, Vahala K J 2007 Opt. Express 15 17172

    [7]

    Armani D K, Kippenberg T J, Spillane S M, Vahala K J 2003 Nature 421 925

    [8]

    Gorodetsky M L, Savchenkov A A 1996 Opt. Lett. 21 453

    [9]

    Grudinin I S, Ilchenko V S, Maleki L 2006 Phys. Rev. A 74 063806

    [10]

    Ilchenko V S, Savchenkov A A, Matsko A B, Maleki L 2004 Phys. Rev. Lett. 92 043903

    [11]

    Anetsberger G, Arcizet O, Unterreithmeier Q P, Rivière R, Schliesser A, Weig E M, Kotthaus J P, Kippenberg T J 2009 Nat. Phys. 5 909

    [12]

    Gröblacher S, Hertzberg J B, Vanner M R, Cole G D, Gigan S, Schwab K C, Aspelmeyer M 2009 Nat. Phys. 5 485

    [13]

    O'Connell A D, Hofheinz M, Ansmann M, Bialczak R C, Lenander M, Lucero E, Neeley M, Sank D, Wang H, Weiges M, Wenner J, Martinis J M, Cleland A N 2010 Nature 464 697

    [14]

    Chan J, Alegre T P M, Safavi-Naeini A H, Hill J T, Krause A, Gröblacher S, Aspelmeyer M, Painter O 2011 Nature 478 89

    [15]

    Huang S, Agarwal G S 2009 Phys. Rev. A 80 033807

    [16]

    Agarwal G S, Huang S 2010 Phys. Rev. A 81 041803

    [17]

    Safavi-Naeini A H, Alegre T P M, Chan J, Eichenfield M, Winger M, Lin Q, Hill J T, Chang D E, Painter O 2011 Nature 472 69

    [18]

    Wang Y D, Clerk A A 2013 Phys. Rev. Lett. 110 253601

    [19]

    Komar P, Bennett S D, Stannigel K, Habraken S J M, Rbl P, Zoller P, Lukin M D 2013 Phys. Rev. A 87 013839

    [20]

    Totsuka K, Tomita M 2006 J. Opt. Soc. Am. B 23 2194

    [21]

    Totsuka K, Tomita M 2007 Phys. Rev. E 75 016610

    [22]

    Agarwal G S, Huang S 2014 New J. Phys. 16 033023

    [23]

    Yan X B, Gu K H, Fu C B, Cui C L, Wang R, Wu J H 2014 Eur. Phys. J. D 68 126

    [24]

    Yan X B, Gu K H, Fu C B, Cui C L, Wang R, Wu J H 2014 Chin. Phys. B 23 114201

    [25]

    Lei F C, Gao M, Du C G, Jing Q L, Long G L 2015 Opt. Express 23 11508

    [26]

    Walls D F, Milburn G J 2008 Quantum Optics (Berlin:Springer Press) pp127-138

  • [1] 王胤, 周驷杰, 陈桥, 邓永和. 能级构型对InAs/GaAs量子点电磁感应透明介质中光孤子存储的影响.  , 2023, 72(8): 084204. doi: 10.7498/aps.72.20221965
    [2] 张跃斌, 马成举, 张垚, 金嘉升, 鲍士仟, 李咪, 李东明. 基于非对称结构全介质超材料的类电磁诱导透明效应研究.  , 2021, 70(19): 194201. doi: 10.7498/aps.70.20210070
    [3] 赵嘉栋, 张好, 杨文广, 赵婧华, 景明勇, 张临杰. 基于里德伯原子电磁诱导透明效应的光脉冲减速.  , 2021, 70(10): 103201. doi: 10.7498/aps.70.20210102
    [4] 褚培新, 张玉斌, 陈俊学. 开口狭缝调制的耦合微腔中表面等离激元诱导透明特性.  , 2020, 69(13): 134205. doi: 10.7498/aps.69.20200369
    [5] 杨柳, 郜中星, 薛冰, 张勇刚, 蔡永茂. 基于自发辐射相干效应的可调光子带隙反射率的提高方法.  , 2018, 67(23): 234204. doi: 10.7498/aps.67.20181374
    [6] 王越, 冷雁冰, 王丽, 董连和, 刘顺瑞, 王君, 孙艳军. 基于石墨烯振幅可调的宽带类电磁诱导透明超材料设计.  , 2018, 67(9): 097801. doi: 10.7498/aps.67.20180114
    [7] 贾玥, 陈肖含, 张好, 张临杰, 肖连团, 贾锁堂. Rydberg原子的电磁诱导透明光谱的噪声转移特性.  , 2018, 67(21): 213201. doi: 10.7498/aps.67.20181168
    [8] 杨光, 王杰, 王军民. 采用高信噪比电磁诱导透明谱测定85Rb原子5D5/2态的超精细相互作用常数.  , 2017, 66(10): 103201. doi: 10.7498/aps.66.103201
    [9] 宁仁霞, 鲍婕, 焦铮. 基于石墨烯超表面的宽带电磁诱导透明研究.  , 2017, 66(10): 100202. doi: 10.7498/aps.66.100202
    [10] 杜英杰, 谢小涛, 杨战营, 白晋涛. 电磁诱导透明系统中的暗孤子.  , 2015, 64(6): 064202. doi: 10.7498/aps.64.064202
    [11] 邱康生, 赵彦辉, 刘相波, 冯宝华, 许秀来. 弯曲氧化锌微米线微腔中的回音壁模.  , 2014, 63(17): 177802. doi: 10.7498/aps.63.177802
    [12] 边成玲, 朱江, 陆佳雯, 闫甲璐, 陈丽清, 王增斌, 区泽宇, 张卫平. 基于电磁诱导透明的原子自旋波读出效率实验研究.  , 2013, 62(17): 174207. doi: 10.7498/aps.62.174207
    [13] 李晓莉, 尚雅轩, 孙江. 射频驱动下电磁诱导透明窗口的分裂和增益的出现.  , 2013, 62(6): 064202. doi: 10.7498/aps.62.064202
    [14] 李琴, 郭红. 宽频脉冲光的传播特性.  , 2011, 60(5): 054204. doi: 10.7498/aps.60.054204
    [15] 吕纯海, 谭磊, 谭文婷. 压缩真空中的电磁诱导透明.  , 2011, 60(2): 024204. doi: 10.7498/aps.60.024204
    [16] 李晓莉, 张连水, 杨宝柱, 杨丽君. 闭合Λ型4能级系统中的电磁诱导透明和电磁诱导吸收.  , 2010, 59(10): 7008-7014. doi: 10.7498/aps.59.7008
    [17] 仇善良, 李永平. 圆腔回音壁模的自洽场描述.  , 2009, 58(12): 8309-8315. doi: 10.7498/aps.58.8309
    [18] 张连水, 李晓莉, 王 健, 杨丽君, 冯晓敏, 李晓苇, 傅广生. 光学-射频双光子耦合作用下的电磁诱导透明和电磁诱导吸收.  , 2008, 57(8): 4921-4926. doi: 10.7498/aps.57.4921
    [19] 杨丽君, 张连水, 李晓莉, 李晓苇, 郭庆林, 韩 理, 傅广生. 多窗口可调谐电磁诱导透明研究.  , 2006, 55(10): 5206-5210. doi: 10.7498/aps.55.5206
    [20] 王 丽, 宋海珍. 四能级原子系统中的电磁诱导吸收.  , 2006, 55(8): 4145-4149. doi: 10.7498/aps.55.4145
计量
  • 文章访问数:  6697
  • PDF下载量:  268
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-29
  • 修回日期:  2016-06-14
  • 刊出日期:  2016-11-05

/

返回文章
返回
Baidu
map