-
TiO2是一种新型的第三代半导体材料,具有重要的应用价值.Cu离子掺杂单晶金红石TiO2,可以改善TiO2对光谱的响应范围,提高转化效率.本文利用第一性原理分别研究了Cu离子填隙、Cu替代Ti、氧空位、钛空位以及含有复合缺陷时金红石TiO2结构及其相应光学性质的变化.结果表明,金红石的价带顶主要由O 2p轨道贡献,导带底主要由Ti 3d轨道贡献;掺杂Cu离子后会在能隙中产生两条新的杂质能级;Ti空位使得晶体费米能量降低,在价带顶产生新能级;O空位使得费米能量升高,在导带底产生新能级,表现出n型半导体性质.通过对含有复合缺陷的晶体电子结构的分析,得到同时含有O空位和Cu填隙时对晶体在可见光范围的吸收影响最大.TiO2 is a versatile functional material in consumer products, such as fabrication of solar cells, light hydrolysis of hydrogen production and optical coating. Technologically, the absorption edge of TiO2 is in the ultraviolet (UV) region, which restrics its applications. Cu doping can solve the crucial problem and extend the absorption edge from the UV to the visible region. The first-principle calculation based on density functional theory with generalized gradient approximation and ultra-soft pseudo-potentials is carried out to investigate the defective rutile TiO2 through using the constructed 222 supercells in which all atoms are allowed to relax. The plane-wave cutoff energy is 340 eV by selecting 223 of k-point in Brillouin zone. O vacancy, Ti vacancy, Cu interstitial, Cu substitutional for Ti and compound defects are all considered. After the structural relaxation, the lattice host is slightly distorted with a little change of the lattice parameters, with out affecting the crystalline phase of rutile. The results show that the valence bands are mostly O 2p states while the conduction bands have mainly Ti 3d properties. The defect of Cu interstitial can bring about two new impurity levels in the energy gap because of Cu 3d states, and the defect of Cu substituted for Ti can also induce two new impurity levels while they are next to the valence band due to the interaction between Cu 3d and nonbonding orbits of O 2p. Ti vacancy can cause the Fermi level energy to lower and produce a new impurity level at the top of the valence band, which will narrow the energy gap. O vacancy can enhance the Fermi level energy and produce a new level at the bottom of the conduction bands, which shows the n-type semiconductor properties. The higher the concentration of Cu substituted for Ti, the larger the band gap is. It is due to the strong interaction between Ti 3d and Cu 3d, which makes the conduction band move to higher energy. Different compound defects have different influences. Cu interstitial and O or Ti vacancies induce new impurity levels within the band gap, which narrows the gap. Meanwhile, interstitial Cu and vacancies can also interact with each other. The hybridization between Cu 3d and nonbonding orbits of O 2p will induce new levels in the rutile with Ti vacancy structure, while nonbonding orbits of Cu 3d develop new levels by itself in the rutile with O vacancy and Cu interstitial. The Analysis the band structure of rutile with compound defects, shows that the rutile with O vacancy and Cu interstitial effectively affects influenced the absorption edge in visible light range. Cu interstitial, Cu substituted for Ti, O vacancy, Ti vacancy and compound defects can all narrow the band gap and produce a new absorption peak in the visible spectral range. It indicates that rutile with defects will improve the absorption in the visible range and achieve the goal of expanding the absorption range of single-crystal rutile.
-
Keywords:
- rutile /
- band structure /
- optical properties /
- Cu
[1] Thelakkat M, Schmitz C, Schmidt H W 2002 Adv. Mater. 14 577
[2] Dou J F, Zou Z Y, Zheng Z G 2000 Mater. Rev. 14 35 (in Chinese)[豆俊峰, 邹振扬, 郑泽根2000材料导报14 35]
[3] Fujishima A, Zhang X 2006 C. R. Chim. 9 750
[4] Schneider J, Matsuoka M, Takeuchi M, Zhang J, Yu H, Anpo M, Detlef W B 2014 Chem. Rev. 114 9919
[5] Li T J, Li G P, Ma J P, Gao X X 2011 Acta Phys. Sin. 60 116101 (in Chinese)[李天晶, 李公平, 马俊平, 高行新2011 60 116101]
[6] Li Y J, Chen W, Li Z P, Li L Y, Ma M Y, Ouyang Y Z 2010 Sci. Sin.:Chim. 2010 1814 (in Chinese)[李佑稷, 陈伟, 李志平, 李雷勇, 马明远, 欧阳玉祝2010中国科学:化学2010 1814]
[7] Nakata K, Ochiai T, Murakami T, Fujishima A 2012 Electrochim. Acta 84 103
[8] Lu Y, Wang P J, Zhang C W, Feng X Y, Jiang L, Zhang G L 2011 Acta Phys. Sin. 60 023101 (in Chinese)[逯瑶, 王培吉, 张昌文, 冯现徉, 蒋雷, 张国莲2011 60 023101]
[9] Xu N N, Li G P, Pan X D, Wang Y B, Chen J S, Bao L M 2014 Chin. Phys. B 23 106101
[10] Glassford K M, Chelikowsky J R 1992 Phys. Rev. B 46 1284
[11] Sheng X C 1992 The Spectrum and Optical Property of Semiconductor (Beijing:Science Press) (in Chinese)[沈学础1992半导体光谱和光学性质(第2版) (北京:科学出版社)]
[12] Zhang J H, Feng Q, Zhu H Q, Yang Y 2015 Laser Optoelectronic Progress 2015 192 (in Chinese)[张菊花, 冯庆, 周晴, 杨英2015激光与光电子学进展2015 192]
[13] Liu J, Liu T Y, Li H X, Liu F M 2015 Acta Phys. Sin. 64 193101 (in Chinese)[刘检, 刘廷禹, 李海心, 刘凤明2015 64 193101]
[14] Huang G Y, Abduljabbar N M, Wirth B D 2013 J. Phys. Condens. Matter 25 2775
[15] Ma J P 2010 M. S. Thesis (Lanzhou:Lanzhou University) (in Chinese)[马俊平2010硕士学位论文(兰州:兰州大学)]
[16] Chen Q L, Tang C Q 2006 J. Mater. Sci. Eng. 24 514 (in Chinese)[陈琦丽, 唐超群2006材料科学与工程学报24 514]
-
[1] Thelakkat M, Schmitz C, Schmidt H W 2002 Adv. Mater. 14 577
[2] Dou J F, Zou Z Y, Zheng Z G 2000 Mater. Rev. 14 35 (in Chinese)[豆俊峰, 邹振扬, 郑泽根2000材料导报14 35]
[3] Fujishima A, Zhang X 2006 C. R. Chim. 9 750
[4] Schneider J, Matsuoka M, Takeuchi M, Zhang J, Yu H, Anpo M, Detlef W B 2014 Chem. Rev. 114 9919
[5] Li T J, Li G P, Ma J P, Gao X X 2011 Acta Phys. Sin. 60 116101 (in Chinese)[李天晶, 李公平, 马俊平, 高行新2011 60 116101]
[6] Li Y J, Chen W, Li Z P, Li L Y, Ma M Y, Ouyang Y Z 2010 Sci. Sin.:Chim. 2010 1814 (in Chinese)[李佑稷, 陈伟, 李志平, 李雷勇, 马明远, 欧阳玉祝2010中国科学:化学2010 1814]
[7] Nakata K, Ochiai T, Murakami T, Fujishima A 2012 Electrochim. Acta 84 103
[8] Lu Y, Wang P J, Zhang C W, Feng X Y, Jiang L, Zhang G L 2011 Acta Phys. Sin. 60 023101 (in Chinese)[逯瑶, 王培吉, 张昌文, 冯现徉, 蒋雷, 张国莲2011 60 023101]
[9] Xu N N, Li G P, Pan X D, Wang Y B, Chen J S, Bao L M 2014 Chin. Phys. B 23 106101
[10] Glassford K M, Chelikowsky J R 1992 Phys. Rev. B 46 1284
[11] Sheng X C 1992 The Spectrum and Optical Property of Semiconductor (Beijing:Science Press) (in Chinese)[沈学础1992半导体光谱和光学性质(第2版) (北京:科学出版社)]
[12] Zhang J H, Feng Q, Zhu H Q, Yang Y 2015 Laser Optoelectronic Progress 2015 192 (in Chinese)[张菊花, 冯庆, 周晴, 杨英2015激光与光电子学进展2015 192]
[13] Liu J, Liu T Y, Li H X, Liu F M 2015 Acta Phys. Sin. 64 193101 (in Chinese)[刘检, 刘廷禹, 李海心, 刘凤明2015 64 193101]
[14] Huang G Y, Abduljabbar N M, Wirth B D 2013 J. Phys. Condens. Matter 25 2775
[15] Ma J P 2010 M. S. Thesis (Lanzhou:Lanzhou University) (in Chinese)[马俊平2010硕士学位论文(兰州:兰州大学)]
[16] Chen Q L, Tang C Q 2006 J. Mater. Sci. Eng. 24 514 (in Chinese)[陈琦丽, 唐超群2006材料科学与工程学报24 514]
计量
- 文章访问数: 6396
- PDF下载量: 281
- 被引次数: 0