-
为研究本征荧光对生物气溶胶粒子探测精度的影响,本文在阐述生物气溶胶荧光光谱信号探测原理的基础上,设计了一台紫外激光诱导荧光雷达.该雷达选用波长为266 nm的四倍频固体激光器作为激励光源,基于本征荧光波长、探测距离等主要参数,对生物气溶胶荧光光谱回波信号的信噪比及粒子浓度的最小分辨率进行数值仿真分析.仿真结果表明,在探测误差小于10%的情况下,距离为1.5 km时,系统对生物气溶胶荧光波长的有效探测范围为300–800 nm;而在距离为2.1 km时,荧光波长的有效探测范围为300–310 nm.此外,在探测距离定义为0.1 km,荧光波长为350和600 nm时,系统对物气溶胶粒子浓度的最小分辨率分别为2个颗粒/L和4个颗粒/L,最小分辨率的差值为2个颗粒/L.仿真结果有利于了解荧光波长变动时激光雷达系统的探测准确度,进而实现大气生物气溶胶更加有效的探测.Biological aerosols which could cause diseases of human beings, animals and plants, are living particles suspended in the atmosphere. Ultraviolet laser induced fluorescence has been developed as a standard technique used to discriminate between biological and non-biological particles. As an effective tool of remote sensing, fluorescence lidar is capable of detecting concentration of biological aerosols with high spatial and temporal resolutions. Intrinsic fluorescence, one of the most important characteristics of biological aerosols, has quite a large effect on the performances of fluorescence lidar. To investigate the effects of intrinsic fluorescence on biological aerosols, we design an ultraviolet laser induced fluorescence lidar at an excited wavelength of 266 nm, with a repetition rate of 10 Hz. Fluorescence signals are collected by a Cassegrain telescope with a diameter of 254 mm, in which fluorescence spectra of 300-800 nm are mainly considered. A spectrograph and a multichannel photomultiplier tube (PMT) array detector are employed to achieve the fine separation and highefficiency detection of fluorescence signals. According to the present configuration, we perform a series of simulations to estimate the measurement range and the concentration resolution of biological aerosols, with a certain pulse energy. With a relative error less than 10%, theoretical analysis shows that designed fluorescence lidar is able to detect the biological aerosols within a range of 1.5 km at a concentration of 1000 particles·L-1. When the detection distance enlarges to 2.1 km, detectable wavelength range is limited to 300-310 nm. In addition, the lidar is capable of identifying minimum concentrations of biological aerosols with 2 particles·L-1 and 4 particles·L-1 at fluorescence wavelengths of 350 nm and 600 nm, respectively, where the induced pulse energy is set to be 60 mJ and detected range 0.1 km. With setting energies of 40 mJ and 20 mJ, minimum concentrations of biological aerosols decrease to 3 particles·L-1 and 6 particles·L-1, respectively, at a fluorescence wavelength of 350 nm. The relative error of minimum concentration resolution is about 2 particles·L-1, increasing rapidly with range. For a fluorescence wavelength of 600 nm, both the minimum concentration and the relative error show relatively high values, 5 particles·L-1 at 40 mJ and 10 particles·L-1 at 20 mJ, where the relative errors are found to be 2 particles·L-1 and 4 particles·L-1, respectively. The results prove that a shorter intrinsic fluorescence wavelength has a better effect on biological aerosol measurement. We believe that a proper intrinsic fluorescence wavelength will further improve the detection accuracy of biological aerosols.
-
Keywords:
- biological aerosols /
- intrinsic fluorescence /
- lidar /
- concentration resolution
[1] Xu A, Xiong C, Zhang P, Liao X Q, Yang W, Zhao Y K, Huang H J 2013 Acta Optica Sinica 33 130 (in Chinese)[徐傲, 熊超, 张佩, 廖小情, 杨巍, 赵勇凯, 黄惠杰2013光学学报33 130]
[2] Després V R, Huffman J A, Burrows S M, Hoose C, Safatov A S, Buryak G, Nowoisky J F, Elbert W, Andreae M O, Poschl U, Jaenicke R 2012 Tellus B 64 15598
[3] Heidi B, Heinrich G, Regina H, Anne K, Georg R, Franziska Z, Hans P 2003 J. Geophys. Res. 108 1919
[4] Franc G D, Demott P J 1998 J. Appl. Meteorol. 37 1293
[5] Sun J, Ariya P A 2006 Atmos. Environ. 40 795
[6] Pan Y L, Hill S C, Pinnick R G, Huang H, Bottiger J R, Chang R K 2010 Opt. Express 18 12436
[7] Gruber S, Matthias-Maser S, Jaenicke R 1997 J. Aerosol Sci. 28 S595
[8] White C C, Kenny C M, Jennings S G 1999 J. Aerosol Sci. 30 809
[9] Artaxo P, Maenhaut W, Storms H, VanGrieken R 1990 J. Geophys. Res. 95 16971
[10] Artaxo P, Storms H, Bruynseels F, Grieken R V, Maenhaut W 1988 J. Geophys. Res. 93 1605
[11] Cai S Y, Zhang P, Zhu L L, Xie C K, Sun Z Y, Cheng W L, Zhao Y K, Huang H J 2012 Acta Optica Sinica 32 119 (in Chinese)[蔡舒窈, 张佩, 朱玲琳, 谢承科, 孙征宇, 程伟林, 赵勇凯, 黄惠杰2012光学学报32 119]
[12] Wan W B, Hua D X, Le J, Yan Z, Zhou C Y 2015 Acta Phys. Sin. 64 190702 (in Chinese)[万文博, 华灯鑫, 乐静, 闫哲, 周春燕2015 64 190702]
[13] Buteau S, Simard J R, Roy G 2010 Proceedings of SPIEThe International Society for Optical Engineering Toulous, France, September 20-23, 2010 p7838
[14] Ge L L, Ding L, Yan J, Wang Y P, Zheng H Y, Fang L 2013 J. At. Mol. Phys. 30 125 (in Chinese)[葛琳琳, 丁蕾, 闫静, 王颖萍, 郑海洋, 方黎2013原子与分子 30 125]
[15] Fang W H, Li Z W, Li Z L, Qu G N, Ouyang S L, Men Z W 2012 Acta Phys. Sin. 61 153301 (in Chinese)[房文汇, 里佐威, 李占龙, 曲冠男, 欧阳顺利, 门志伟2012 61 153301]
[16] Øystein F, Rustad G, Skogan G 2012 Biomed. Opt. Express 3 2964
[17] Feng C X, Huang L H, Zhou G C, Han J, Zeng A J, Zhao Y K, Huang H J 2010 Chinese J. Lasers 37 2592 (in Chinese)[冯春霞, 黄立华, 周光超, 韩洁, 曾爱军, 赵永凯, 黄惠杰2010中国激光37 2592]
[18] Change G Q, Song C Y, Wang L 2010 Acta Opt. Sin. 12 s100503 (in Chinese)[常冠钦, 宋存义, 汪莉2010光学学报30 s100503]
[19] Pinnick R G, Hill S C, Niles S, Garvey D M, Pan Y L, Holler S, Chang R K 1999 Field Anal. Chem. Technol. 3 221
[20] Pan Y L, Huang H, Chang R K 2012 J. Quant. Spectrosc. Radiat. Transfer 113 2213
[21] Pan Y L 2015 J. Quant. Spectrosc. Radiat. Transfer 150 12
[22] Megie G 1985 Eos, Trans. Am. Geophys. Union 66 686
[23] Li S S, Zhang Z H, Zhao W, Li Z K, Huang S L 2015 Chin. Phys. B 24 95
[24] Wojtanowski J, Zygmunt M, Muzal M, Knysak P, Mlodzianko A, Gawlikowski A. Traczyk M 2015 Opt. Laser Technol. 67 25
[25] Zou B F, Zhang Y C, Hu S X 2008 Laser Technol. 32 287 (in Chinese)[邹炳芳, 张寅超, 胡顺星2008激光技术32 287]
[26] Joshi D, Kumar D, Maini A K, Sharma R C 2013 Spectrochim. Acta A 112 446
[27] Nakajima T Y, Imai T, Uchino O, Nagai T 1999 Appl. Opt. 38 5218
-
[1] Xu A, Xiong C, Zhang P, Liao X Q, Yang W, Zhao Y K, Huang H J 2013 Acta Optica Sinica 33 130 (in Chinese)[徐傲, 熊超, 张佩, 廖小情, 杨巍, 赵勇凯, 黄惠杰2013光学学报33 130]
[2] Després V R, Huffman J A, Burrows S M, Hoose C, Safatov A S, Buryak G, Nowoisky J F, Elbert W, Andreae M O, Poschl U, Jaenicke R 2012 Tellus B 64 15598
[3] Heidi B, Heinrich G, Regina H, Anne K, Georg R, Franziska Z, Hans P 2003 J. Geophys. Res. 108 1919
[4] Franc G D, Demott P J 1998 J. Appl. Meteorol. 37 1293
[5] Sun J, Ariya P A 2006 Atmos. Environ. 40 795
[6] Pan Y L, Hill S C, Pinnick R G, Huang H, Bottiger J R, Chang R K 2010 Opt. Express 18 12436
[7] Gruber S, Matthias-Maser S, Jaenicke R 1997 J. Aerosol Sci. 28 S595
[8] White C C, Kenny C M, Jennings S G 1999 J. Aerosol Sci. 30 809
[9] Artaxo P, Maenhaut W, Storms H, VanGrieken R 1990 J. Geophys. Res. 95 16971
[10] Artaxo P, Storms H, Bruynseels F, Grieken R V, Maenhaut W 1988 J. Geophys. Res. 93 1605
[11] Cai S Y, Zhang P, Zhu L L, Xie C K, Sun Z Y, Cheng W L, Zhao Y K, Huang H J 2012 Acta Optica Sinica 32 119 (in Chinese)[蔡舒窈, 张佩, 朱玲琳, 谢承科, 孙征宇, 程伟林, 赵勇凯, 黄惠杰2012光学学报32 119]
[12] Wan W B, Hua D X, Le J, Yan Z, Zhou C Y 2015 Acta Phys. Sin. 64 190702 (in Chinese)[万文博, 华灯鑫, 乐静, 闫哲, 周春燕2015 64 190702]
[13] Buteau S, Simard J R, Roy G 2010 Proceedings of SPIEThe International Society for Optical Engineering Toulous, France, September 20-23, 2010 p7838
[14] Ge L L, Ding L, Yan J, Wang Y P, Zheng H Y, Fang L 2013 J. At. Mol. Phys. 30 125 (in Chinese)[葛琳琳, 丁蕾, 闫静, 王颖萍, 郑海洋, 方黎2013原子与分子 30 125]
[15] Fang W H, Li Z W, Li Z L, Qu G N, Ouyang S L, Men Z W 2012 Acta Phys. Sin. 61 153301 (in Chinese)[房文汇, 里佐威, 李占龙, 曲冠男, 欧阳顺利, 门志伟2012 61 153301]
[16] Øystein F, Rustad G, Skogan G 2012 Biomed. Opt. Express 3 2964
[17] Feng C X, Huang L H, Zhou G C, Han J, Zeng A J, Zhao Y K, Huang H J 2010 Chinese J. Lasers 37 2592 (in Chinese)[冯春霞, 黄立华, 周光超, 韩洁, 曾爱军, 赵永凯, 黄惠杰2010中国激光37 2592]
[18] Change G Q, Song C Y, Wang L 2010 Acta Opt. Sin. 12 s100503 (in Chinese)[常冠钦, 宋存义, 汪莉2010光学学报30 s100503]
[19] Pinnick R G, Hill S C, Niles S, Garvey D M, Pan Y L, Holler S, Chang R K 1999 Field Anal. Chem. Technol. 3 221
[20] Pan Y L, Huang H, Chang R K 2012 J. Quant. Spectrosc. Radiat. Transfer 113 2213
[21] Pan Y L 2015 J. Quant. Spectrosc. Radiat. Transfer 150 12
[22] Megie G 1985 Eos, Trans. Am. Geophys. Union 66 686
[23] Li S S, Zhang Z H, Zhao W, Li Z K, Huang S L 2015 Chin. Phys. B 24 95
[24] Wojtanowski J, Zygmunt M, Muzal M, Knysak P, Mlodzianko A, Gawlikowski A. Traczyk M 2015 Opt. Laser Technol. 67 25
[25] Zou B F, Zhang Y C, Hu S X 2008 Laser Technol. 32 287 (in Chinese)[邹炳芳, 张寅超, 胡顺星2008激光技术32 287]
[26] Joshi D, Kumar D, Maini A K, Sharma R C 2013 Spectrochim. Acta A 112 446
[27] Nakajima T Y, Imai T, Uchino O, Nagai T 1999 Appl. Opt. 38 5218
计量
- 文章访问数: 7947
- PDF下载量: 219
- 被引次数: 0