搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于事件触发采样控制的异构混沌系统主从同步

马大中 李晓瑜 孙秋野 张化光

引用本文:
Citation:

基于事件触发采样控制的异构混沌系统主从同步

马大中, 李晓瑜, 孙秋野, 张化光

Event-triggered heterogeneous master-slave synchronization with sampled-data control

Ma Da-Zhong, Li Xiao-Yu, Sun Qiu-Ye, Zhang Hua-Guang
PDF
导出引用
  • 本文针对异构不同维的混沌系统主从同步问题进行了研究.基于事件触发的采样控制器被设计用来实现主从混沌系统的同步.首先针对系统中所包含的传输时滞,构造系统时滞模型.基于所设计的时滞模型,采用输入延迟的方法将同步控制器求解问题转化为所对应时滞系统的稳定性问题.然后通过构造Lyapunov-Krasovskii泛函并结合Wirtinger不等式和自由权矩阵,给出了异构混沌系统同步的条件和采样控制器的求解方法.所设计的采样控制器只有在触发规则满足的条件下,才更新控制参数,降低了网络的使用率.最后通过数值仿真验证了所提出方法的有效性.
    As is well known, chaos synchronization has a good performance in secret communication. However, in most existing researches, chaos synchronization is realized between master chaotic system and slave chaotic system with real-time communication. A lot of network bandwidths are wasted in useless communication which may bring great economic costs and increase the likelihood of network congestion. In this paper, the synchronization for the heterogeneous master-slave system is studied. Compared with the homogeneous synchronization, the heterogeneous synchronization has a broad application prospect. Then the sampling controller based on event trigger is designed to achieve the heterogeneous master-slave synchronization which can save network bandwidth, with the control performance maintained. Because transmission time delay is universal in communication system, the delay model of the system is constructed and utilized firstly. Based on the proposed system model, the master-slave heterogeneous synchronization problem is equivalently converted into the asymptotical stability problem of a time-delay system by using the input delayed approach. Then, according to the Lyapunov stability theory and linear matrix inequality, we may rigouously prove that the synchronization of heteogeneous master-slave chaotic system can be achieved. Meanwhile, the heterogeneous master-slave system synchronization conditions and sampling controller can be given based on the constructing Lyapunov-Krasovskii functional with the Wirtinger inequality and free weight matrix method. The sampling controller actually is a stateback controller. But for the purpose of reducing the network usage rate, wheter the state can be transmitted can be determined by the event-triggered rules. The event-triggered rules are designed based on the error state between master chaotic system and slave chaotic system, and the synchronization performance index can be determined by choosing the system parameter. The designed sampling controller updates the control parameters when the event-triggered rules are satisfied. Finally, numerical simulation experiments are employed to verify the correctness and effectiveness of the proposed method. Results indicate that the hetergeneous master-slave chaotic system with transimission time delay can indeed achieve synchronization by event-triggerd sample control. Moreover, the number of communications between master chaotic system and slave chaotic system is less than before and the synchroization performance is also at an idea level.
      通信作者: 马大中, madazhong@ise.neu.edu.cn
    • 基金项目: 国家自然科学基金重点项目(批准号:61433004)和国家自然科学基金(批准号:61473069,61573094)资助的课题.
      Corresponding author: Ma Da-Zhong, madazhong@ise.neu.edu.cn
    • Funds: Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 61433004) and the National Natural Science Foundation of China (Grant Nos. 61473069, 61573094).
    [1]

    Zhang H G, Liu D R, Wang Z L 2009 Controlling Chaos:Suppression, Synchronization and Chaotification (London:Springer) pp1-10

    [2]

    Zhang H G, Xie X P, Wang X Y 2010 Chin. Phys. B 19 060504

    [3]

    Yang J, Qiu Z K, Li X, Zhuang Z W 2011 IET Signal Process. 5 748

    [4]

    Jia H Y, Chen Z Q, Qi G Y 2014 IEEE Trans. Circuits Syst. Regul. Pap. 61 845

    [5]

    Zheng S 2015 ISA Trans. 58 20

    [6]

    He S B, Sun K H, Wang H H 2016 Physica A 461 812

    [7]

    Zhang H G, Xie Y H, Wang Z L, Zheng C D 2007 IEEE Trans. Neural Netw. Learn. Syst. 18 1841

    [8]

    Zhang H G, Ma T D, Huang G B, Wang Z L 2010 IEEE Trans. Syst. Man Cybern. Part B Cybern. 40 831

    [9]

    Ma D Z, Zhan H G, Wang Z S, Feng J 2010 Chin. Phys. B 19 050506

    [10]

    Zhang H G, Huan W, Wang Z L, Chai T Y 2006 Phys. Lett. A 350 363

    [11]

    Hu C, Yu J 2016 Chaos, Solitons Fractals 91 262

    [12]

    Lu J G, Hill D J 2008 IEEE Trans. Circuits Syst. Express Briefs 55 586

    [13]

    Meng J, Wang X Y 2008 Acta Phys. Sin. 57 726 (in Chinese)[孟娟, 王兴元2008 57 726]

    [14]

    Meng J, Wang X Y 2009 Acta Phys. Sin. 58 819 (in Chinese)[孟娟, 王兴元2009 58 819]

    [15]

    Cai N, Jing Y W, Zhang S Y 2009 Acta Phys. Sin. 58 802 (in Chinese)[蔡娜, 井元伟, 张嗣瀛2009 58 802]

    [16]

    Huang L L, Qi X 2013 Acta Phys. Sin 62 080507 (in Chinese)[黄丽莲, 齐雪2013 62 080507]

    [17]

    Åström K J, Bernhardsson B 1999 Proceedings of the 14th IFAC World Congress Beijing, China, July 25-27, 1999 p301

    [18]

    Heemels W, Donkers M C F, Teel A R 2013 IEEE Trans. Autom. Control 58 847

    [19]

    Anta A, Tabuada P 2010 IEEE Trans. Autom. Control 55 2030

    [20]

    Mazo M, Anta A, Tabuada P 2010 Automatica 46 1310

    [21]

    Wang X F, Lemmon M D 2009 IEEE Trans. Autom. Control 54 452

    [22]

    Mu N K, Liao X F, Huang T W 2015 IEEE Trans. Circuits Syst. Express Briefs 62 1007

    [23]

    Zhu W, Jiang Z P 2015 IEEE Trans. Autom. Control 60 1362

    [24]

    Wen G H, Chen M Z Q, Yu X H 2016 IEEE Trans. Circuits Syst. Express Briefs 63 304

  • [1]

    Zhang H G, Liu D R, Wang Z L 2009 Controlling Chaos:Suppression, Synchronization and Chaotification (London:Springer) pp1-10

    [2]

    Zhang H G, Xie X P, Wang X Y 2010 Chin. Phys. B 19 060504

    [3]

    Yang J, Qiu Z K, Li X, Zhuang Z W 2011 IET Signal Process. 5 748

    [4]

    Jia H Y, Chen Z Q, Qi G Y 2014 IEEE Trans. Circuits Syst. Regul. Pap. 61 845

    [5]

    Zheng S 2015 ISA Trans. 58 20

    [6]

    He S B, Sun K H, Wang H H 2016 Physica A 461 812

    [7]

    Zhang H G, Xie Y H, Wang Z L, Zheng C D 2007 IEEE Trans. Neural Netw. Learn. Syst. 18 1841

    [8]

    Zhang H G, Ma T D, Huang G B, Wang Z L 2010 IEEE Trans. Syst. Man Cybern. Part B Cybern. 40 831

    [9]

    Ma D Z, Zhan H G, Wang Z S, Feng J 2010 Chin. Phys. B 19 050506

    [10]

    Zhang H G, Huan W, Wang Z L, Chai T Y 2006 Phys. Lett. A 350 363

    [11]

    Hu C, Yu J 2016 Chaos, Solitons Fractals 91 262

    [12]

    Lu J G, Hill D J 2008 IEEE Trans. Circuits Syst. Express Briefs 55 586

    [13]

    Meng J, Wang X Y 2008 Acta Phys. Sin. 57 726 (in Chinese)[孟娟, 王兴元2008 57 726]

    [14]

    Meng J, Wang X Y 2009 Acta Phys. Sin. 58 819 (in Chinese)[孟娟, 王兴元2009 58 819]

    [15]

    Cai N, Jing Y W, Zhang S Y 2009 Acta Phys. Sin. 58 802 (in Chinese)[蔡娜, 井元伟, 张嗣瀛2009 58 802]

    [16]

    Huang L L, Qi X 2013 Acta Phys. Sin 62 080507 (in Chinese)[黄丽莲, 齐雪2013 62 080507]

    [17]

    Åström K J, Bernhardsson B 1999 Proceedings of the 14th IFAC World Congress Beijing, China, July 25-27, 1999 p301

    [18]

    Heemels W, Donkers M C F, Teel A R 2013 IEEE Trans. Autom. Control 58 847

    [19]

    Anta A, Tabuada P 2010 IEEE Trans. Autom. Control 55 2030

    [20]

    Mazo M, Anta A, Tabuada P 2010 Automatica 46 1310

    [21]

    Wang X F, Lemmon M D 2009 IEEE Trans. Autom. Control 54 452

    [22]

    Mu N K, Liao X F, Huang T W 2015 IEEE Trans. Circuits Syst. Express Briefs 62 1007

    [23]

    Zhu W, Jiang Z P 2015 IEEE Trans. Autom. Control 60 1362

    [24]

    Wen G H, Chen M Z Q, Yu X H 2016 IEEE Trans. Circuits Syst. Express Briefs 63 304

  • [1] 张迪, 张银星, 邱小芬, 祝光湖, 李科赞. 非一致通信时滞动力学网络上的接连滞后同步.  , 2018, 67(1): 018901. doi: 10.7498/aps.67.20171630
    [2] 王宇娟, 涂俐兰, 宋帅, 李宽洋. 耦合含时滞的相互依存网络的局部自适应异质同步.  , 2018, 67(5): 050504. doi: 10.7498/aps.67.20171927
    [3] 贾雅琼, 蒋国平. 基于状态观测器的分数阶时滞混沌系统同步研究.  , 2017, 66(16): 160501. doi: 10.7498/aps.66.160501
    [4] 林飞飞, 曾喆昭. 不确定分数阶时滞混沌系统自适应神经网络同步控制.  , 2017, 66(9): 090504. doi: 10.7498/aps.66.090504
    [5] 韩敏, 张雅美, 张檬. 具有双重时滞的时变耦合复杂网络的牵制外同步研究.  , 2015, 64(7): 070506. doi: 10.7498/aps.64.070506
    [6] 吴学礼, 刘杰, 张建华, 王英. 基于不确定性变时滞分数阶超混沌系统的滑模自适应鲁棒的同步控制.  , 2014, 63(16): 160507. doi: 10.7498/aps.63.160507
    [7] 张丽, 杨晓丽, 孙中奎. 噪声环境下时滞耦合网络的广义投影滞后同步.  , 2013, 62(24): 240502. doi: 10.7498/aps.62.240502
    [8] 张芳芳, 刘树堂, 余卫勇. 时滞复Lorenz混沌系统特性及其自时滞同步.  , 2013, 62(22): 220505. doi: 10.7498/aps.62.220505
    [9] 梁义, 王兴元. 结点含时滞的具有零和非零时滞耦合的复杂网络混沌同步.  , 2013, 62(1): 018901. doi: 10.7498/aps.62.018901
    [10] 王健安. 时变时滞耦合两个不同复杂网络的自适应广义同步.  , 2012, 61(2): 020509. doi: 10.7498/aps.61.020509
    [11] 刘恒, 余海军, 向伟. 带未知扰动的多涡卷混沌系统修正函数时滞投影同步.  , 2012, 61(18): 180503. doi: 10.7498/aps.61.180503
    [12] 陶洪峰, 胡寿松. 参数未知分段混沌系统的时滞广义投影同步.  , 2011, 60(1): 010514. doi: 10.7498/aps.60.010514
    [13] 桑金玉, 王娇, 岳立娟. 异构二维延迟系统的广义混沌同步.  , 2010, 59(11): 7618-7622. doi: 10.7498/aps.59.7618
    [14] 杨东升, 张化光, 赵琰, 宋崇辉, 王迎春. 基于LMI的参数未知时变时滞混沌系统模糊自适应H∞同步.  , 2010, 59(3): 1562-1567. doi: 10.7498/aps.59.1562
    [15] 张化光, 马大中, 王占山, 冯健. 一类多时滞混沌系统的主从容错同步.  , 2010, 59(1): 147-156. doi: 10.7498/aps.59.147
    [16] 吴然超. 时滞离散神经网络的同步控制.  , 2009, 58(1): 139-142. doi: 10.7498/aps.58.139
    [17] 罗 群, 吴 薇, 李丽香, 杨义先, 彭海朋. 节点含时滞的不确定复杂网络的自适应同步研究.  , 2008, 57(3): 1529-1534. doi: 10.7498/aps.57.1529
    [18] 楼旭阳, 崔宝同. 混沌时滞神经网络系统的反同步.  , 2008, 57(4): 2060-2067. doi: 10.7498/aps.57.2060
    [19] 秦 洁, 于洪洁. 超混沌R?ssler系统构成的星形网络的混沌同步.  , 2007, 56(12): 6828-6835. doi: 10.7498/aps.56.6828
    [20] 王兴元, 刘 明. 用滑模控制方法实现具有扇区非线性输入的主从混沌系统同步.  , 2005, 54(6): 2584-2589. doi: 10.7498/aps.54.2584
计量
  • 文章访问数:  7008
  • PDF下载量:  386
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-02
  • 修回日期:  2016-07-27
  • 刊出日期:  2016-10-05

/

返回文章
返回
Baidu
map