搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

耦合含时滞的相互依存网络的局部自适应异质同步

王宇娟 涂俐兰 宋帅 李宽洋

引用本文:
Citation:

耦合含时滞的相互依存网络的局部自适应异质同步

王宇娟, 涂俐兰, 宋帅, 李宽洋

Local adaptive heterogeneous synchronization for interdependent networks with delayed coupling

Wang Yu-Juan, Tu Li-Lan, Song Shuai, Li Kuan-Yang
PDF
导出引用
  • 针对由两个子网络构成的耦合含时滞的相互依存网络,研究其局部自适应异质同步问题.时滞同时存在于两个子网络的内部耦合项和子网络间的一对一相互依赖耦合项中,且网络的耦合关系满足非线性特性和光滑性.基于李雅普诺夫稳定性理论、线性矩阵不等式方法和自适应控制技术,通过对子网络设置合适的控制器,提出了使得相互依存网络的子网络分别同步到异质孤立系统的充分条件.针对小世界网络和无标度网络构成的相互依存网络进行数值模拟,验证了提出理论的正确性和有效性.
    With the development of the networks, the coupling between networks has become increasingly significant. Here, the networks can be described as interdependent networks. An interdependent network can have two different kinds of links, a connectivity link and a dependency link, which are fundamental properties of interdependent networks. During the past several years, interdependent complex network science has attracted a great deal of attention. This is mainly because the rapid increase in computing power has led to an information and communication revolution. Investigating and improving our understanding of interdependent networks will enable us to make the networks (such as infrastructures) we use in daily life more efficient and robust. As a significant collective behavior, synchronization phenomena and processes are common in nature and play a vital role in the interaction between dynamic units. At the same time, the time delay problem is an important issue to be investigated, especially in biological and physical networks. As a matter of fact, time delays exist commonly in the real networks. A signal or influence traveling through a network is often associated with time delay. In this paper, the local adaptive heterogeneous synchronization is investigated for interdependent networks with delayed coupling consisting of two sub-networks, which are one-by-one inter-coupled. The delays exist both in the intra-coupling and in the inter-coupling between two sub-networks, the intra-coupling and inter-coupling relations of the networks satisfy the requirements for nonlinearity and smoothness, and the nodes between two sub-networks have different dynamical systems, namely heterogeneous systems. Based on the Lyapunov stability theory, linear matrix inequality, and adaptive control technique, with proper controllers and adaptive laws for the networks, the sufficient conditions are proposed to synchronize the sub-networks of the interdependent networks into heterogeneous isolated systems, respectively. In order to illustrate the main results of the theoretical analysis clearly, some numerical simulations for an interdependent network with NW small world sub-network and BA sub-network are presented, in which each sub-network has 100 nodes and the heterogeneous systems are Lorenz and Rössler systems. The numerical simulations show that using the controllers and adaptive laws proposed, the network obtains the local heterogeneous synchronization quickly, that is, the nodes of two sub-networks are synchronized into Lorenz and Rössler systems separately. Thus, they verify the feasibility and correctness of the proposed techniques. It is worth noting that the presented results are delay-independent. In the future, our research will be directed to the further investigation of the delay-dependent synchronization of interdependent networks by using the current results as a basis.
      通信作者: 涂俐兰, tulilan@wust.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61473338,61473213)资助的课题.
      Corresponding author: Tu Li-Lan, tulilan@wust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61473338, 61473213).
    [1]

    Havlin S, Kenett D Y, Ben-Jacob E, et al. 2012 Eur. Phys. J. Spec. Top. 214 273

    [2]

    Feng A, Gao X Y, Guan J H, Huang S P, Liu Q 2017 Physica A 483 57

    [3]

    Buldyrev S V, Parshani R, Paul G, Stanley H E, Havlin S 2010 Nature 464 1025

    [4]

    Cardillo A, Zanin M, Gómez-Gardeñes J, et al. 2013 Eur. Phys. J. Spec. Top. 215 23

    [5]

    Ang L M, Seng K P, Zungeru A M 2016 IJSIR 7 52

    [6]

    Stasiuk A I, Hryshchuk R V, Goncharova L L 2017 Cybernet. Syst. Analysis 53 476

    [7]

    Bauch C T, Galvani A P 2013 Science 342 47

    [8]

    Chen W, Wu T, Li Z W, Wang L 2017 Physica A 479 542

    [9]

    Um J, Minnhagen P, Kim B J 2011 Chaos 21 025106

    [10]

    Lee K, Kim J, Lee S, et al. 2014 Multiplex networks// D'Agostino G, Scala A Networks of Networks: The Last Frontier of Complexity. (1st Ed.) (Berlin: Springer) pp3-36

    [11]

    Albert R, Barabási A L 2002 Rev. Mod. Phys. 74 47

    [12]

    Wang X F, Chen G 2002 IEEE Trans. Circuits Syst. I 49 54

    [13]

    Wang X F, Li X, Chen G R 2006 Theory and Application of Complex Networks (Beijing: Tsinghua University Press) p7 (in Chinese) [汪小帆, 李翔, 陈关荣 2006 复杂网络理论及其应用(北京: 清华大学出版社) 第7页]

    [14]

    Doyle J C, Alderson D L, Li L 2005 PNAS 102 14497

    [15]

    Wang X F, Chen G R 2002 Physica A 310 521

    [16]

    Kocarev L, Amato P 2005 Chaos 15 024101

    [17]

    Zhou J, Chen T 2006 IEEE Trans. Circuits Syst. I 53 733

    [18]

    Tu L L, Lu J A 2009 Comput. Math. Appl. 57 28

    [19]

    Zhang Q J, Lu J A, Lv J H 2008 IEEE Trans. Circuits Syst. Ⅱ 55 183

    [20]

    Liu J L 2013 Acta Phys. Sin. 62 040503 (in Chinese) [刘金良 2013 62 040503]

    [21]

    Liang Y, Wang X Y 2013 Acta Phys. Sin. 62 018901 (in Chinese) [梁义, 王兴元 2013 62 018901]

    [22]

    Wu W, Zhou W, Chen T 2009 IEEE Trans. Circuits Syst. I 56 829

    [23]

    Ma J, Mi L, Zhou P, et al. 2017 Appl. Math. Comput. 307 321

    [24]

    Liu J, Chen S H, Lu J A 2003 Acta Phys. Sin. 52 1595 (in Chinese) [刘杰, 陈士华, 陆君安 2003 52 1595]

    [25]

    Wong W K, Zhen B, Xu J, Wang Z 2012 Chaos 22 033146

    [26]

    Rosenblum M G, Pikovsky A S, Kurth J 1997 Phys. Rev. Lett. 78 4193

    [27]

    Zhang H G, Liu Z W, Huang G B, Wang Z S 2010 IEEE Trans. Neural. Netw. 21 91

    [28]

    Zheng Y G, Bao L J 2017 Chaos. Soliton Fract. 98 145

    [29]

    Yang S F, Guo Z Y, Wang J 2017 IEEE Trans. Neur. Net. Lear. 28 1657

    [30]

    He W L, Chen G R, Han Q L, et al. 2017 IEEE Trans. Syst. Man. Cy-S. 47 1655

    [31]

    Zhang X Y, Boccaletti S, Guan S G 2015 Phys. Rev. Lett. 114 038701

    [32]

    Li Y, Wu X Q, Lu J A, L J H 2016 IEEE Trans. Circuits Syst. Ⅱ 63 206

    [33]

    Xu Q, Zhuang S X, Hu D, Zeng Y F, Xiao J 2014 Abst. Appl. Anal. 10.1155 453149

    [34]

    Boyd S, Ghaoui L E, Feron E, Balakrishnan V 1994 Linear Matrix Inequalities in System and Control Theory (Philadelphia: SIAM) pp7-14

    [35]

    Tu L L, Liu H F, Yu L 2013 Acta Phys. Sin. 62 140506 (in Chinese) [涂俐兰, 刘红芳, 余乐 2013 62 140506]

  • [1]

    Havlin S, Kenett D Y, Ben-Jacob E, et al. 2012 Eur. Phys. J. Spec. Top. 214 273

    [2]

    Feng A, Gao X Y, Guan J H, Huang S P, Liu Q 2017 Physica A 483 57

    [3]

    Buldyrev S V, Parshani R, Paul G, Stanley H E, Havlin S 2010 Nature 464 1025

    [4]

    Cardillo A, Zanin M, Gómez-Gardeñes J, et al. 2013 Eur. Phys. J. Spec. Top. 215 23

    [5]

    Ang L M, Seng K P, Zungeru A M 2016 IJSIR 7 52

    [6]

    Stasiuk A I, Hryshchuk R V, Goncharova L L 2017 Cybernet. Syst. Analysis 53 476

    [7]

    Bauch C T, Galvani A P 2013 Science 342 47

    [8]

    Chen W, Wu T, Li Z W, Wang L 2017 Physica A 479 542

    [9]

    Um J, Minnhagen P, Kim B J 2011 Chaos 21 025106

    [10]

    Lee K, Kim J, Lee S, et al. 2014 Multiplex networks// D'Agostino G, Scala A Networks of Networks: The Last Frontier of Complexity. (1st Ed.) (Berlin: Springer) pp3-36

    [11]

    Albert R, Barabási A L 2002 Rev. Mod. Phys. 74 47

    [12]

    Wang X F, Chen G 2002 IEEE Trans. Circuits Syst. I 49 54

    [13]

    Wang X F, Li X, Chen G R 2006 Theory and Application of Complex Networks (Beijing: Tsinghua University Press) p7 (in Chinese) [汪小帆, 李翔, 陈关荣 2006 复杂网络理论及其应用(北京: 清华大学出版社) 第7页]

    [14]

    Doyle J C, Alderson D L, Li L 2005 PNAS 102 14497

    [15]

    Wang X F, Chen G R 2002 Physica A 310 521

    [16]

    Kocarev L, Amato P 2005 Chaos 15 024101

    [17]

    Zhou J, Chen T 2006 IEEE Trans. Circuits Syst. I 53 733

    [18]

    Tu L L, Lu J A 2009 Comput. Math. Appl. 57 28

    [19]

    Zhang Q J, Lu J A, Lv J H 2008 IEEE Trans. Circuits Syst. Ⅱ 55 183

    [20]

    Liu J L 2013 Acta Phys. Sin. 62 040503 (in Chinese) [刘金良 2013 62 040503]

    [21]

    Liang Y, Wang X Y 2013 Acta Phys. Sin. 62 018901 (in Chinese) [梁义, 王兴元 2013 62 018901]

    [22]

    Wu W, Zhou W, Chen T 2009 IEEE Trans. Circuits Syst. I 56 829

    [23]

    Ma J, Mi L, Zhou P, et al. 2017 Appl. Math. Comput. 307 321

    [24]

    Liu J, Chen S H, Lu J A 2003 Acta Phys. Sin. 52 1595 (in Chinese) [刘杰, 陈士华, 陆君安 2003 52 1595]

    [25]

    Wong W K, Zhen B, Xu J, Wang Z 2012 Chaos 22 033146

    [26]

    Rosenblum M G, Pikovsky A S, Kurth J 1997 Phys. Rev. Lett. 78 4193

    [27]

    Zhang H G, Liu Z W, Huang G B, Wang Z S 2010 IEEE Trans. Neural. Netw. 21 91

    [28]

    Zheng Y G, Bao L J 2017 Chaos. Soliton Fract. 98 145

    [29]

    Yang S F, Guo Z Y, Wang J 2017 IEEE Trans. Neur. Net. Lear. 28 1657

    [30]

    He W L, Chen G R, Han Q L, et al. 2017 IEEE Trans. Syst. Man. Cy-S. 47 1655

    [31]

    Zhang X Y, Boccaletti S, Guan S G 2015 Phys. Rev. Lett. 114 038701

    [32]

    Li Y, Wu X Q, Lu J A, L J H 2016 IEEE Trans. Circuits Syst. Ⅱ 63 206

    [33]

    Xu Q, Zhuang S X, Hu D, Zeng Y F, Xiao J 2014 Abst. Appl. Anal. 10.1155 453149

    [34]

    Boyd S, Ghaoui L E, Feron E, Balakrishnan V 1994 Linear Matrix Inequalities in System and Control Theory (Philadelphia: SIAM) pp7-14

    [35]

    Tu L L, Liu H F, Yu L 2013 Acta Phys. Sin. 62 140506 (in Chinese) [涂俐兰, 刘红芳, 余乐 2013 62 140506]

  • [1] 秦严严, 王昊, 王炜, 万千. 混有协同自适应巡航控制车辆的异质交通流稳定性解析与基本图模型.  , 2017, 66(9): 094502. doi: 10.7498/aps.66.094502
    [2] 林飞飞, 曾喆昭. 不确定分数阶时滞混沌系统自适应神经网络同步控制.  , 2017, 66(9): 090504. doi: 10.7498/aps.66.090504
    [3] 贾雅琼, 蒋国平. 基于状态观测器的分数阶时滞混沌系统同步研究.  , 2017, 66(16): 160501. doi: 10.7498/aps.66.160501
    [4] 吕明, 宁智, 阎凯. 线性与非线性稳定性理论下液体射流空间发展的对比研究.  , 2016, 65(16): 166801. doi: 10.7498/aps.65.166801
    [5] 杨慧, 唐明, 蔡世民, 周涛. 异质自适应网络中的核心-边缘结构及其对疾病传播的抑制作用.  , 2016, 65(5): 058901. doi: 10.7498/aps.65.058901
    [6] 吴学礼, 刘杰, 张建华, 王英. 基于不确定性变时滞分数阶超混沌系统的滑模自适应鲁棒的同步控制.  , 2014, 63(16): 160507. doi: 10.7498/aps.63.160507
    [7] 王斌, 薛建议, 贺好艳, 朱德兰. 基于线性矩阵不等式的一类新羽翼倍增混沌分析与控制.  , 2014, 63(21): 210502. doi: 10.7498/aps.63.210502
    [8] 杨娟, 杨丹, 黄彬, 张小洪, 杨聪. 变时延移动Ad-Hoc网络容量非合作规划博弈模型的渐近稳定性.  , 2014, 63(2): 020501. doi: 10.7498/aps.63.020501
    [9] 鲁延玲, 蒋国平, 宋玉蓉. 自适应网络中病毒传播的稳定性和分岔行为研究.  , 2013, 62(13): 130202. doi: 10.7498/aps.62.130202
    [10] 涂俐兰, 刘红芳, 余乐. 噪声下时滞复杂网络的局部自适应H无穷一致性.  , 2013, 62(14): 140506. doi: 10.7498/aps.62.140506
    [11] 王健安. 时变时滞耦合两个不同复杂网络的自适应广义同步.  , 2012, 61(2): 020509. doi: 10.7498/aps.61.020509
    [12] 涂俐兰, 柯超, 丁咏梅. 随机扰动下一般混沌系统的H∞同步.  , 2011, 60(5): 056803. doi: 10.7498/aps.60.056803
    [13] 杨东升, 张化光, 赵琰, 宋崇辉, 王迎春. 基于LMI的参数未知时变时滞混沌系统模糊自适应H∞同步.  , 2010, 59(3): 1562-1567. doi: 10.7498/aps.59.1562
    [14] 高 洋, 李丽香, 彭海朋, 杨义先, 张小红. 多重边融合复杂动态网络的自适应同步.  , 2008, 57(4): 2081-2091. doi: 10.7498/aps.57.2081
    [15] 罗 群, 吴 薇, 李丽香, 杨义先, 彭海朋. 节点含时滞的不确定复杂网络的自适应同步研究.  , 2008, 57(3): 1529-1534. doi: 10.7498/aps.57.1529
    [16] 张建雄, 唐万生, 徐 勇. 一个新的三维混沌系统.  , 2008, 57(11): 6799-6807. doi: 10.7498/aps.57.6799
    [17] 李秀春, 徐 伟, 肖玉柱. 基于积分观测器实现一类受扰混沌系统的同步.  , 2008, 57(3): 1465-1470. doi: 10.7498/aps.57.1465
    [18] 王占山, 张化光, 王智良. 一类混沌神经网络的全局同步.  , 2006, 55(6): 2687-2693. doi: 10.7498/aps.55.2687
    [19] 窦春霞, 张淑清. 基于观测器的模型不确定的耦合时空混沌H∞跟踪控制.  , 2004, 53(12): 4120-4125. doi: 10.7498/aps.53.4120
    [20] 吴忠强, 岳东, 许世范. Chua混沌系统的一种模糊控制器设计——LMI法.  , 2002, 51(6): 1193-1197. doi: 10.7498/aps.51.1193
计量
  • 文章访问数:  6139
  • PDF下载量:  184
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-30
  • 修回日期:  2017-11-04
  • 刊出日期:  2018-03-05

/

返回文章
返回
Baidu
map