搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有双重时滞的时变耦合复杂网络的牵制外同步研究

韩敏 张雅美 张檬

引用本文:
Citation:

具有双重时滞的时变耦合复杂网络的牵制外同步研究

韩敏, 张雅美, 张檬

Outer synchronization analysis of two time-varying networks with double delays based on pinning control

Han Min, Zhang Ya-Mei, Zhang Meng
PDF
导出引用
  • 针对同时具有节点时滞和耦合时滞的时变耦合复杂网络的外同步问题, 提出一种简单有效的自适应牵制控制方法. 首先构建一种贴近实际的驱动-响应复杂网络模型, 在模型中引入双重时滞和时变不对称外部耦合矩阵. 进一步设计易于实现的自适应牵制控制器, 对网络中的一部分关键节点进行控制. 构造适当的Lyapunov泛函, 利用 LaSalle不变集原理和线性矩阵不等式, 给出两个复杂网络实现外同步的充分条件. 最后, 仿真结果表明所提同步方法的有效性, 同时揭示耦合时滞对同步收敛速度的影响.
    It is well known that time delay is universal in complex networks. However, in most existing researches outer synchronization is realized between two networks with time delay by adding controllers to all nodes which may bring great economic costs and increase the difficulties in control in practice. In this paper, in order to deal with the problem of outer synchronization between two time-varying coupling networks with node delay and coupling delay, an adaptive pinning control scheme is proposed. First, a more realistic drive-response complex network model is constructed by introducing double delays and asymmetric coupling configuration matrices. Then, we design an adaptive pinning controller which is easy to implement, and choose an effective pinning strategy to control a crucial part of the nodes in the response network. Based on LaSalle' invariance principle and the linear matrix inequality, we may rigorously prove that the outer synchronization between the proposed drive-response networks can be achieved, and meanwhile some sufficient conditions are derived by adopting an appropriate Lyapunov-Krasovskii energy function. Finally, numerical simulation experiments are employed to verify the correctness and the effectiveness of the proposed method. Results indicate that the drive-response networks with double delays can indeed achieve outer synchronization by pinning control. Moreover, the synchronization is independent of coupling delay. And the remarkable influences of coupling delays on the synchronization speed are also revealed.
    • 基金项目: 国家自然科学基金(批准号: 61374154)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61374154).
    [1]

    Strogatz S H 2001 Nature 410 268

    [2]

    Pecora L M, Carroll T L 1990 Phys. Rev. Lett. 64 821

    [3]

    Han M, Niu Z Q, Han B 2008 Acta Phys. Sin. 57 6824 (in Chinese) [韩敏, 牛志强, 韩冰 2008 57 6824]

    [4]

    Li K, Guan S G, Gong X F, Lai C H 2008 Phys. Lett. A 372 7133

    [5]

    L L, Li G, Guo L, Meng L, Zou J R, Yang M 2010 Chin. Phys. B 19 080507

    [6]

    Zhang Q J, Zhao J C 2012 Chin. Phys. B 21 040502

    [7]

    Wang G J, Cao J D, Lu J Q 2010 Physica A 389 1480

    [8]

    Zhang M, L L, L N, Fan X 2012 Acta Phys. Sin. 61 220508 (in Chinese) [张檬, 吕翎, 吕娜, 范鑫 2012 61 220508]

    [9]

    Li C P, Sun W G, Kurths J 2007 Phys. Rev. E 76 046204

    [10]

    Tang H W, Chen L, Lu J A, Tse C K 2008 Physica A 387 5623

    [11]

    Wu Z Y, Fu X C 2012 Nonlinear Dyn. 69 685

    [12]

    Sun Y Z, Li W, Ruan J 2013 Commun. Nonlinear Sci. Numer. Simul. 18 989

    [13]

    Lu J Q, Ho D W C, Cao J D, Kurths J 2011 IEEE Trans. neural netw. 22 329

    [14]

    Fang X L, Yang Q, Yan W J 2014 Math. Probl. Eng. 2014 437673

    [15]

    Cai S M, He Q B, Hao J J, Liu Z R 2010 Phys. Lett. A 374 2539

    [16]

    Li K, Guan S G, Gong X F, Lai C H 2008 Phys. Lett. A 372 7133

    [17]

    Liang Y, Wang X Y 2013 Acta Phys. Sin. 62 018901 (in Chinese) [梁义, 王兴元 2013 62 018901]

    [18]

    Li X, Wang X F, Chen G R 2004 IEEE Trans. Circuits Syst. I-Regul. Pap. 51 2074

    [19]

    Chen T P, Liu X W, Lu W L 2007 IEEE Trans. Circuits Syst. I-Regul. Pap. 54 1317

    [20]

    Guo W L, Austin F, Chen S H, Sun W 2009 Phys. Lett. A 373 1565

    [21]

    Lu J Q, Kurths J, Cao J D, Mahdavi N, Huang C 2012 IEEE Trans. Neural Netw. Learn. Syst. 23 285

    [22]

    Lu J Q, Ho D W C, Cao J D, Kurths J 2013 Nonlinear Anal.-Real World Appl. 14 581

    [23]

    Wang S G, Yao H X 2012 Chin. Phys. B 21 050508

    [24]

    Fan C X, Jiang G P, Jiang F H 2010 IEEE Trans. Circuits Syst. I-Regul. Pap. 57 2991

    [25]

    Zheng S, Bi Q S 2011 Phys. Scr. 84 025008

    [26]

    Hu C, Yu J, Jiang H J, Teng Z D 2011 Phys. Lett. A 375 873

    [27]

    LaSalle J P 1960 Proc Natl. Acad. Sci. U.S.A. 46 363

    [28]

    Yu W W, Chen G R, L J H, Kurths J 2013 SIAM J. Control Optim. 51 1395

    [29]

    Song Q, Cao J D 2010 IEEE Trans. Circuits Syst. I-Regul. Pap. 57 672

  • [1]

    Strogatz S H 2001 Nature 410 268

    [2]

    Pecora L M, Carroll T L 1990 Phys. Rev. Lett. 64 821

    [3]

    Han M, Niu Z Q, Han B 2008 Acta Phys. Sin. 57 6824 (in Chinese) [韩敏, 牛志强, 韩冰 2008 57 6824]

    [4]

    Li K, Guan S G, Gong X F, Lai C H 2008 Phys. Lett. A 372 7133

    [5]

    L L, Li G, Guo L, Meng L, Zou J R, Yang M 2010 Chin. Phys. B 19 080507

    [6]

    Zhang Q J, Zhao J C 2012 Chin. Phys. B 21 040502

    [7]

    Wang G J, Cao J D, Lu J Q 2010 Physica A 389 1480

    [8]

    Zhang M, L L, L N, Fan X 2012 Acta Phys. Sin. 61 220508 (in Chinese) [张檬, 吕翎, 吕娜, 范鑫 2012 61 220508]

    [9]

    Li C P, Sun W G, Kurths J 2007 Phys. Rev. E 76 046204

    [10]

    Tang H W, Chen L, Lu J A, Tse C K 2008 Physica A 387 5623

    [11]

    Wu Z Y, Fu X C 2012 Nonlinear Dyn. 69 685

    [12]

    Sun Y Z, Li W, Ruan J 2013 Commun. Nonlinear Sci. Numer. Simul. 18 989

    [13]

    Lu J Q, Ho D W C, Cao J D, Kurths J 2011 IEEE Trans. neural netw. 22 329

    [14]

    Fang X L, Yang Q, Yan W J 2014 Math. Probl. Eng. 2014 437673

    [15]

    Cai S M, He Q B, Hao J J, Liu Z R 2010 Phys. Lett. A 374 2539

    [16]

    Li K, Guan S G, Gong X F, Lai C H 2008 Phys. Lett. A 372 7133

    [17]

    Liang Y, Wang X Y 2013 Acta Phys. Sin. 62 018901 (in Chinese) [梁义, 王兴元 2013 62 018901]

    [18]

    Li X, Wang X F, Chen G R 2004 IEEE Trans. Circuits Syst. I-Regul. Pap. 51 2074

    [19]

    Chen T P, Liu X W, Lu W L 2007 IEEE Trans. Circuits Syst. I-Regul. Pap. 54 1317

    [20]

    Guo W L, Austin F, Chen S H, Sun W 2009 Phys. Lett. A 373 1565

    [21]

    Lu J Q, Kurths J, Cao J D, Mahdavi N, Huang C 2012 IEEE Trans. Neural Netw. Learn. Syst. 23 285

    [22]

    Lu J Q, Ho D W C, Cao J D, Kurths J 2013 Nonlinear Anal.-Real World Appl. 14 581

    [23]

    Wang S G, Yao H X 2012 Chin. Phys. B 21 050508

    [24]

    Fan C X, Jiang G P, Jiang F H 2010 IEEE Trans. Circuits Syst. I-Regul. Pap. 57 2991

    [25]

    Zheng S, Bi Q S 2011 Phys. Scr. 84 025008

    [26]

    Hu C, Yu J, Jiang H J, Teng Z D 2011 Phys. Lett. A 375 873

    [27]

    LaSalle J P 1960 Proc Natl. Acad. Sci. U.S.A. 46 363

    [28]

    Yu W W, Chen G R, L J H, Kurths J 2013 SIAM J. Control Optim. 51 1395

    [29]

    Song Q, Cao J D 2010 IEEE Trans. Circuits Syst. I-Regul. Pap. 57 672

  • [1] 朱霖河, 李玲. 基于辟谣机制的时滞谣言传播模型的动力学分析.  , 2020, 69(2): 020501. doi: 10.7498/aps.69.20191503
    [2] 高飞, 胡道楠, 童恒庆, 王传美. 分数阶Willis环脑迟发性动脉瘤时滞系统混沌分析.  , 2018, 67(15): 150501. doi: 10.7498/aps.67.20180262
    [3] 丁学利, 李玉叶. 具有时滞的抑制性自突触诱发的神经放电的加周期分岔.  , 2016, 65(21): 210502. doi: 10.7498/aps.65.210502
    [4] 温少芳, 申永军, 杨绍普. 分数阶时滞反馈对Duffing振子动力学特性的影响.  , 2016, 65(9): 094502. doi: 10.7498/aps.65.094502
    [5] 彭兴钊, 姚宏, 杜军, 丁超, 张志浩. 基于时滞耦合映像格子的多耦合边耦合网络级联抗毁性研究.  , 2014, 63(7): 078901. doi: 10.7498/aps.63.078901
    [6] 梁义, 王兴元. 结点含时滞的具有零和非零时滞耦合的复杂网络混沌同步.  , 2013, 62(1): 018901. doi: 10.7498/aps.62.018901
    [7] 张丽, 杨晓丽, 孙中奎. 噪声环境下时滞耦合网络的广义投影滞后同步.  , 2013, 62(24): 240502. doi: 10.7498/aps.62.240502
    [8] 张勇. 时滞对一类单位负反馈二阶振荡系统的正面作用分析.  , 2012, 61(23): 230202. doi: 10.7498/aps.61.230202
    [9] 徐昌进. 厄尔尼诺-南方波涛动时滞海气振子耦合模型的分岔分析.  , 2012, 61(22): 220203. doi: 10.7498/aps.61.220203
    [10] 尚慧琳. 时滞位移反馈对Helmholtz振子系统的分形侵蚀安全域的控制.  , 2011, 60(7): 070501. doi: 10.7498/aps.60.070501
    [11] 张丽萍, 王惠南, 徐敏. 一个三时滞生物捕食被捕食系统分岔的混合控制.  , 2011, 60(1): 010506. doi: 10.7498/aps.60.010506
    [12] 陶洪峰, 胡寿松. 参数未知分段混沌系统的时滞广义投影同步.  , 2011, 60(1): 010514. doi: 10.7498/aps.60.010514
    [13] 刘爽, 刘彬, 张业宽, 闻岩. 一类时滞非线性相对转动系统的Hopf分岔与周期解的稳定性.  , 2010, 59(1): 38-43. doi: 10.7498/aps.59.38
    [14] 曾长燕, 孙梅, 田立新. 基于自适应-脉冲控制方法实现时变耦合驱动-响应复杂网络的投影同步.  , 2010, 59(8): 5288-5292. doi: 10.7498/aps.59.5288
    [15] 吴然超. 时滞离散神经网络的同步控制.  , 2009, 58(1): 139-142. doi: 10.7498/aps.58.139
    [16] 马跃超, 黄丽芳, 张庆灵. 时变不确定时滞连续系统的鲁棒H∞保成本控制.  , 2007, 56(7): 3744-3752. doi: 10.7498/aps.56.3744
    [17] 莫嘉琪, 王 辉, 林万涛. 厄尔尼诺-南方涛动时滞海-气振子耦合模型.  , 2006, 55(7): 3229-3232. doi: 10.7498/aps.55.3229
    [18] 王占山, 张化光. 时滞递归神经网络中神经抑制的作用.  , 2006, 55(11): 5674-5680. doi: 10.7498/aps.55.5674
    [19] 张 强, 高 琳, 王 超, 许 进. 时滞双向联想记忆神经网络的全局稳定性.  , 2003, 52(7): 1600-1605. doi: 10.7498/aps.52.1600
    [20] 张 强, 高 琳, 王 超, 袁 涛, 许 进. 具有时滞的一阶细胞神经网络动态行为研究.  , 2003, 52(7): 1606-1610. doi: 10.7498/aps.52.1606
计量
  • 文章访问数:  6595
  • PDF下载量:  370
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-09-11
  • 修回日期:  2014-11-11
  • 刊出日期:  2015-04-05

/

返回文章
返回
Baidu
map