搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

动态光子晶体环境下二能级原子自发辐射场及频谱的特性

邢容 谢双媛 许静平 羊亚平

引用本文:
Citation:

动态光子晶体环境下二能级原子自发辐射场及频谱的特性

邢容, 谢双媛, 许静平, 羊亚平

Characteristics of the spontaneous emission field and spectrum of a two-level atom in a dynamic photonic crystal

Xing Rong, Xie Shuang-Yuan, Xu Jing-Ping, Yang Ya-Ping
PDF
导出引用
  • 研究了光子晶体能带带边频率受到阶跃调制和三角函数周期调制两种情况下原子自发辐射场强度随时间的演化特性以及频谱的特性.阶跃调制时,调制发生后原子辐射的局域场的频率以及非局域场的构成情况都只取决于原子的跃迁频率和此时的带边频率,且都与具有相同参数条件的静态情形下的相同.调制发生时刻对自发辐射场的稳态强度有影响.三角函数周期调制时,辐射场强度在足够长时间后随时间做有衰减的准周期振荡.调制频率决定了准周期振荡的频率,并对衰减率有影响.辐射场能量在一组相邻间隔近似等于调制频率的离散频率附近形成尖锐峰值,它们的中心频率值取决于带边频率的取值范围和原子的跃迁频率,调制初相位会影响初始一段时间的辐射场强度以及辐射谱上连续谱成分的强弱.
    The spontaneous emission field and spectrum of a two-level atom, located in an isotropic photonic crystal with dynamic band edges, are investigated by means of numeric calculation. The investigation is expected to help comprehend the characteristics of the atomic spontaneous emission in the dynamic photonic crystal, and provide a possible way to control dynamically the spontaneous emission in photonic crystal. The expression of the spontaneous radiation field is obtained without using the far-zone approximation and the Weisskopf-Wigner approximation, and expected to be applicable in other relevant researches. In the investigation, the spontaneous radiation field and spectrum are calculated when the band edge frequency is unmodulated, or modulated by a step function or triangle function. In the unmodulated situation, the radiation field intensity tends to a constant which is equal to the intensity of the localized field component. The radiation field pulse presents a wave packet behavior as propagation distance increases. The components of the radiation field correspond one-to-one to the peaks in the spontaneous radiation spectrum. When the band edge frequency is modulated by step function, the radiation field intensity tends to a steady-state value after the modulation has happened. And the steady-state intensity is affected by the time when the modulation happens. The components of the non-localized field and the frequency of the localized field after modulation depend on the atomic transition frequency and the band edge frequency, and are identical to those in the unmodulated situation with the same parameters. When the band edge frequency is modulated by a triangle function, the field intensity presents a decaying quasi-periodic oscillation after a long enough time. The modulation frequency determines the frequency of the oscillation, and influences the decay rate. The radiation energy becomes sharp peaks around a set of the discrete frequencies which are evenly spaced with the modulation frequency. The central frequency of these frequencies depends on the atomic transition frequency and the value range of the band edge frequency. The modulation initial phase affects the intensity of the radiation field emitted in an initial period of time.
      通信作者: 邢容, 1110477@tongji.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11074188,11274242)、国家自然科学基金委员会-中国工程物理研究院联合基金(批准号:U1330203)和国家重点基础研究计划特别基金(批准号:2011CB922203,2013CB632701)资助的课题.
      Corresponding author: Xing Rong, 1110477@tongji.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11074188, 11274242), the Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics (Grant No. U1330203) and the National Basic Research Program of Special Foundation of China (NKBRSFC) (Grant Nos. 2011CB922203, 2013CB632701).
    [1]

    Purcell E M 1946 Phys. Rev. 69 681

    [2]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059

    [3]

    John S 1987 Phys. Rev. Lett. 58 2486

    [4]

    Tarhan I I, Watson G H 1996 Phys. Rev. Lett. 76 315

    [5]

    John S 1984 Phys. Rev. Lett. 53 2169

    [6]

    John S, Wang J 1991 Phys. Rev. B 43 12772

    [7]

    John S, Wang J 1990 Phys. Rev. Lett. 64 2418

    [8]

    Zhu S Y, Chen H, Huang H 1997 Phys. Rev. Lett. 79 205

    [9]

    John S, Quang T 1994 Phys. Rev. A 50 1764

    [10]

    Quang T, Woldeyohannes M, John S 1997 Phys. Rev. Lett. 79 5238

    [11]

    Yang Y P, Zhu S Y 2000 Phys. Rev. A 61 043809

    [12]

    Xie S Y, Yang Y P, Wu X 2001 Eur. Phys. J. D 13 129

    [13]

    Wang X H, Gu B Y 2005 Physics 34 18 (in Chinese) [王雪华, 顾本源2005物理34 18]

    [14]

    Figotin A, Godin Y A, Vitebsky I 1998 Phys. Rev. B 57 2841

    [15]

    Su J, Chen H M 2010 Acta Opt. Sin. 30 2710 (in Chinese) [苏坚, 陈鹤鸣2010光学学报30 2710]

    [16]

    Zhang L F, Huang J P 2010 Chin. Phys. B 19 024213

    [17]

    Han M G, Shin C G, Jeon S J, Shim H, Heo C J, Jin H, Kim J W, Lee S 2012 Adv. Mater. 24 6438

    [18]

    Oh J M, Hoshina T, Takeda H, Tsurumi T 2013 Appl. Phys. Express 6 062001

    [19]

    Ge J P, He L, Goebl J, Yin Y D 2009 J. Am. Chem. Soc. 131 3484

    [20]

    Yu G J, Pu S L, Wang X, Ji H Z 2012 Acta Phys. Sin. 61 194703 (in Chinese) [于国君, 卜胜利, 王响, 纪红柱2012 61 194703]

    [21]

    Sugiyama H, Sawada T, Yano H, Kanai T 2013 J. Mater. Chem. C 1 6103

    [22]

    Liu Z D, Gao J J, Li B, Zhou J 2013 Opt. Mater. 35 1134

    [23]

    Law C K, Zhu S Y, Zubariry M S 1995 Phys. Rev. A 52 4095

    [24]

    Priyesh K V, Thayyullathil R B 2012 Commun. Theor. Phys. 57 468

    [25]

    Pisipati U, Almakrami I M, Joshi A, Serna J D 2012 Am. J. Phys. 80 612

    [26]

    Wang L, Xu J P, Gao Y F 2010 J. Phys. B: At. Mol. Opt. Phys. 43 095102

    [27]

    Liao X, Cong H L, Jiang D L, Ren X Z 2010 Acta Phys. Sin. 59 5508 (in Chinese) [廖旭, 丛红璐, 姜道来, 任学藻2010 59 5508]

    [28]

    Jia F, Xie S Y, Yang Y P 2009 Chin. Phys. B 18 3193

    [29]

    Kofman A G, Kurizki G 2000 Phys. Rev. Lett. 87 270405

    [30]

    Linington I E, Garraway B M 2006 J. Phys. B: At. Mol. Opt. Phys. 39 3383

    [31]

    Linington I E, Garraway B M 2008 Phys. Rev. A 77 033831

    [32]

    Xing R, Xie S Y, Xu J P, Yang Y P 2014 Acta Phys. Sin. 63 094205 (in Chinese) [邢容, 谢双媛, 许静平, 羊亚平2014 63 094205]

    [33]

    Linz P 1985 Analytical and Numerical Methods for Volterra Equations (Philadelphia: Society for Industrial and Applied Mathematics) Chapter 7

    [34]

    Scully M O, Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press) Chapter 6

    [35]

    Yang Y P, Huang X S 2007 J. Mod. Opt. 54 1407

    [36]

    Yang Y P, Zhu S Y 2000 Phys. Rev. A 62 013805

    [37]

    Lambropoulos P, Nikolopoulos G M, Nielsen T R, Bay S 2000 Rep. Prog. Phys. 63 455

  • [1]

    Purcell E M 1946 Phys. Rev. 69 681

    [2]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059

    [3]

    John S 1987 Phys. Rev. Lett. 58 2486

    [4]

    Tarhan I I, Watson G H 1996 Phys. Rev. Lett. 76 315

    [5]

    John S 1984 Phys. Rev. Lett. 53 2169

    [6]

    John S, Wang J 1991 Phys. Rev. B 43 12772

    [7]

    John S, Wang J 1990 Phys. Rev. Lett. 64 2418

    [8]

    Zhu S Y, Chen H, Huang H 1997 Phys. Rev. Lett. 79 205

    [9]

    John S, Quang T 1994 Phys. Rev. A 50 1764

    [10]

    Quang T, Woldeyohannes M, John S 1997 Phys. Rev. Lett. 79 5238

    [11]

    Yang Y P, Zhu S Y 2000 Phys. Rev. A 61 043809

    [12]

    Xie S Y, Yang Y P, Wu X 2001 Eur. Phys. J. D 13 129

    [13]

    Wang X H, Gu B Y 2005 Physics 34 18 (in Chinese) [王雪华, 顾本源2005物理34 18]

    [14]

    Figotin A, Godin Y A, Vitebsky I 1998 Phys. Rev. B 57 2841

    [15]

    Su J, Chen H M 2010 Acta Opt. Sin. 30 2710 (in Chinese) [苏坚, 陈鹤鸣2010光学学报30 2710]

    [16]

    Zhang L F, Huang J P 2010 Chin. Phys. B 19 024213

    [17]

    Han M G, Shin C G, Jeon S J, Shim H, Heo C J, Jin H, Kim J W, Lee S 2012 Adv. Mater. 24 6438

    [18]

    Oh J M, Hoshina T, Takeda H, Tsurumi T 2013 Appl. Phys. Express 6 062001

    [19]

    Ge J P, He L, Goebl J, Yin Y D 2009 J. Am. Chem. Soc. 131 3484

    [20]

    Yu G J, Pu S L, Wang X, Ji H Z 2012 Acta Phys. Sin. 61 194703 (in Chinese) [于国君, 卜胜利, 王响, 纪红柱2012 61 194703]

    [21]

    Sugiyama H, Sawada T, Yano H, Kanai T 2013 J. Mater. Chem. C 1 6103

    [22]

    Liu Z D, Gao J J, Li B, Zhou J 2013 Opt. Mater. 35 1134

    [23]

    Law C K, Zhu S Y, Zubariry M S 1995 Phys. Rev. A 52 4095

    [24]

    Priyesh K V, Thayyullathil R B 2012 Commun. Theor. Phys. 57 468

    [25]

    Pisipati U, Almakrami I M, Joshi A, Serna J D 2012 Am. J. Phys. 80 612

    [26]

    Wang L, Xu J P, Gao Y F 2010 J. Phys. B: At. Mol. Opt. Phys. 43 095102

    [27]

    Liao X, Cong H L, Jiang D L, Ren X Z 2010 Acta Phys. Sin. 59 5508 (in Chinese) [廖旭, 丛红璐, 姜道来, 任学藻2010 59 5508]

    [28]

    Jia F, Xie S Y, Yang Y P 2009 Chin. Phys. B 18 3193

    [29]

    Kofman A G, Kurizki G 2000 Phys. Rev. Lett. 87 270405

    [30]

    Linington I E, Garraway B M 2006 J. Phys. B: At. Mol. Opt. Phys. 39 3383

    [31]

    Linington I E, Garraway B M 2008 Phys. Rev. A 77 033831

    [32]

    Xing R, Xie S Y, Xu J P, Yang Y P 2014 Acta Phys. Sin. 63 094205 (in Chinese) [邢容, 谢双媛, 许静平, 羊亚平2014 63 094205]

    [33]

    Linz P 1985 Analytical and Numerical Methods for Volterra Equations (Philadelphia: Society for Industrial and Applied Mathematics) Chapter 7

    [34]

    Scully M O, Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press) Chapter 6

    [35]

    Yang Y P, Huang X S 2007 J. Mod. Opt. 54 1407

    [36]

    Yang Y P, Zhu S Y 2000 Phys. Rev. A 62 013805

    [37]

    Lambropoulos P, Nikolopoulos G M, Nielsen T R, Bay S 2000 Rep. Prog. Phys. 63 455

  • [1] 方云团, 王张鑫, 范尔盼, 李小雪, 王洪金. 基于结构反转二维光子晶体的拓扑相变及拓扑边界态的构建.  , 2020, 69(18): 184101. doi: 10.7498/aps.69.20200415
    [2] 邢容, 谢双媛, 许静平, 羊亚平. 动态光子晶体中V型三能级原子的自发辐射.  , 2017, 66(1): 014202. doi: 10.7498/aps.66.014202
    [3] 李明, 陈翠玲. 二能级原子玻色-爱因斯坦凝聚体与双模光场相互作用系统中原子激光的压缩性质.  , 2014, 63(4): 043201. doi: 10.7498/aps.63.043201
    [4] 邢容, 谢双媛, 许静平, 羊亚平. 动态各向同性光子晶体中二能级原子的自发辐射.  , 2014, 63(9): 094205. doi: 10.7498/aps.63.094205
    [5] 王慧琴, 方利广, 王一凡, 余奥列. 光子晶体晶粒尺寸和排列结构对随机激光辐射特性的影响.  , 2011, 60(1): 014203. doi: 10.7498/aps.60.014203
    [6] 鄢嫣, 魏巧, 李高翔. 非线性光子晶体中原子辐射光场的非经典性质.  , 2010, 59(4): 2505-2511. doi: 10.7498/aps.59.2505
    [7] 谢双媛, 胡翔. 各向异性光子晶体中二能级原子和自发辐射场间的纠缠.  , 2010, 59(9): 6172-6177. doi: 10.7498/aps.59.6172
    [8] 孙宇航, 惠小强. 原子在双腔场间的光子辐射.  , 2008, 57(9): 5584-5588. doi: 10.7498/aps.57.5584
    [9] 王菊霞, 杨志勇, 安毓英. 多模光场与二能级原子相互作用的纠缠交换与保持.  , 2007, 56(11): 6420-6426. doi: 10.7498/aps.56.6420
    [10] 厉以宇, 顾培夫, 李明宇, 张锦龙, 刘 旭. 波状结构二维光子晶体的自准直特性及亚波长成像的研究.  , 2006, 55(5): 2596-2600. doi: 10.7498/aps.55.2596
    [11] 黄仙山, 谢双媛, 羊亚平. 各向异性光子晶体中Λ型原子的自发辐射性质.  , 2006, 55(2): 696-703. doi: 10.7498/aps.55.696
    [12] 谭 荣, 李高翔. 低频强场作用下三维光子晶体中二能级原子的自发辐射性质.  , 2005, 54(5): 2059-2065. doi: 10.7498/aps.54.2059
    [13] 刘晓东, 王义全, 许兴胜, 程丙英, 张道中. 具有态守恒赝隙的光子晶体中两能级原子自发辐射的增强与抑制.  , 2004, 53(1): 125-131. doi: 10.7498/aps.53.125
    [14] 王立军, 余慧莺. 窄带激光与能级具有超精细结构的二能级原子的相干激发.  , 2004, 53(12): 4151-4156. doi: 10.7498/aps.53.4151
    [15] 陈爱喜, 吴曙东, 金丽霞, 詹志明. 运动的二能级原子与双模量子化腔场的相互作用.  , 2003, 52(10): 2466-2470. doi: 10.7498/aps.52.2466
    [16] 陈 三, 谢双媛, 羊亚平, 陈 鸿. 双能带三维光子晶体中二能级原子的自发辐射.  , 2003, 52(4): 853-858. doi: 10.7498/aps.52.853
    [17] 张登玉. 消除简并双光子过程中二能级原子的消相干性.  , 2002, 51(3): 532-535. doi: 10.7498/aps.51.532
    [18] 赵鹭明, 王立军. 超精细结构对激光与二能级原子相互作用的影响.  , 2002, 51(6): 1227-1232. doi: 10.7498/aps.51.1227
    [19] 黄春佳, 厉江帆, 周明, 方家元. 虚光场对双模压缩真空场与原子相互作用系统中光子统计性质的影响.  , 2001, 50(10): 1920-1924. doi: 10.7498/aps.50.1920
    [20] 邢爱堂, 黄湘友, 董太乾. 单模量子场作用下二能级原子能级的AC Stark移动.  , 2000, 49(11): 2146-2150. doi: 10.7498/aps.49.2146
计量
  • 文章访问数:  5973
  • PDF下载量:  166
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-23
  • 修回日期:  2016-07-07
  • 刊出日期:  2016-10-05

/

返回文章
返回
Baidu
map