搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

相干态和压缩真空态的自适应最优估计方法

陈坤 陈树新 吴德伟 杨春燕 王希 李响 吴昊 刘卓崴

引用本文:
Citation:

相干态和压缩真空态的自适应最优估计方法

陈坤, 陈树新, 吴德伟, 杨春燕, 王希, 李响, 吴昊, 刘卓崴

Adaptive optimal measurement for the squeezed vacuum and coherent state

Chen Kun, Chen Shu-Xin, Wu De-Wei, Yang Chun-Yan, Wang Xi, Li Xiang, Wu Hao, Liu Zhuo-Wei
PDF
导出引用
  • 针对文献[ 65 054203]中量子零拍探测技术测量的输出相位精度与相位自身相关,且对本振光、压缩真空光和相干光的相位有严格要求,在理论上设计了一种相干态和压缩真空态的自适应最优估计方法.首先以纯态的方法推导得到相干态和压缩真空态的量子费舍尔信息,sinh2r+||2e2r.设计了一组能使估计误差达到量子Cramer-Rao下界的最优半正定算子值测量算子,但该测量算子需要精确已知所要估计的相位参数.为此,引入了一种自适应估计方法,通过不断更新测量算子和概率函数,利用最大似然估计器逐渐得到相位参数.经理论证明,该方法能以概率1收敛于相位真值,且能达到量子Cramer-Rao下界.
    The output phase of the Sagnac interferometer has been measured with quantum balanced homodyne technique when coherent light and squeezed vacuum light are fed into the Sagnac interferometer simultaneously [Chen Kun et al., Acta Phys. Sin. 65 054203(2016)]. Nevertheless, there exist two deficiencies: 1) the phase sensitivity is related to the phase itself; 2) there are strict requirements for the phases of local oscillator light, coherent light and squeezed vacuum light. For overcoming these deficiencies, an adaptive optimal measurement scheme is suggested for the phase estimation. Firstly, we calculate that the quantum Fisher information (QFI) of the squeezed vacuum and coherent state is sinh2r+||2e2r by treating them as a quantum pure state, for they satisfy a condition of the quantum pure state, namely ()=()2. The QFI is related to quantum Cramer-Rao lower bound which can be used to evaluate the performance of the estimator. Secondly, we make an analysis of positive operator-valued measure (POVM) and design a set of the optimal measurement operators for reaching the quantum Cramer-Rao lower bound, whereas the optimal measurement operators depend on the true value of the phase which is what we want to estimate. In order to solve the problem and estimate the parameter effectively, an adaptive method is suggested. We set an initial value of the phase parameter to obtain a set of measurement operators which are not optimal at the first step. And then the initial measurement operators are used for POVM and to obtain a conditional probability function, from which we can obtain a new value of the phase with maximum likelihood estimator. Therefore, the measurement operators and conditional probability function will be updated with the new value. As the measurement operators and conditional probability function are updated step by step, we can estimate the value adaptively. In fact, the results of the maximum likelihood estimator will converge at the true value of the phase parameter gradually, which is then proved with the theoretical analysis. All in all, an adaptive measurement method of estimating the phase parameter of the squeezed vacuum and coherent state in Sagnac interferometer is suggested, and is proved theoretically to be that the scheme will converge at the true value of the phase with a probability of 1 and can reach the quantum Cramer-Rao lower bound.
      通信作者: 陈树新, chenshuxin68@163.com
    • 基金项目: 国家自然科学基金(批准号:61573372)资助的课题.
      Corresponding author: Chen Shu-Xin, chenshuxin68@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61573372).
    [1]

    Bouyer P 2014 Gyroscopy and Navigation 5 20

    [2]

    Shao L Y, Luo Y, Zhang Z Y, Zou X H, Luo B, Pan W, Yan L S 2015 Opt. Commun. 336 73

    [3]

    Joseph S 2014 Gen. Relativ. Gravit. 46 1710

    [4]

    Trevor L C, Samuel D P, Robert J H, Byungmoon C, David M J 2014 Opt. Lett. 39 513

    [5]

    Kiarash Z A, Michel J F D 2015 J. Opt. Soc. Am. B 32 339

    [6]

    John R E T, Christopher P 2014 Appl. Phys. B 114 333

    [7]

    Chen K, Chen S X, Wu D W, Yang C Y, Wu H 2016 Acta Phys. Sin. 65 054203 (in Chinese) [陈坤, 陈树新, 吴德伟, 杨春燕, 吴昊2016 65 054203]

    [8]

    Kuznetsov A G, Molchanov A V, Chirkin M V, Izmailov E A 2015 Quantum Electron. 45 78

    [9]

    Bertocchi G, Alibart O, Ostrowsky D B 2006 J. Phys. B 39 1011

    [10]

    Kolkiran, Agarwal G S 2007 Opt. Express 15 6798

    [11]

    Scully M O, Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press) pp101-106

    [12]

    Li X, Voss P L, Sharping J E, Kumar P 2005 Phys. Rev. Lett. 94 053601

    [13]

    Yurke B, McCall S L, Klauder J R 1986 Phys. Rev. A 33 4033

    [14]

    Alex M 2006 Phys. Rev. A 73 033821

    [15]

    Luca P, Augusto S 2014 arXiv 1411.5164v1

    [16]

    Takanori S 2015 Phys. Rev. A 91 042126

    [17]

    Barndor-Nielsen O E, Gill R D 2000 J. Phys. A: General Phys. 33 4481

    [18]

    Helstrom C W 1976 Quantum Detection and Estimation Theory (New York: Academic Press) pp266-276

    [19]

    Nagaoka H 2005 Asymptotic Theory of Quantum Statistical Inference (Singapore: World Scientific Press) pp125-132

    [20]

    Okamoto R, Minako I, Satoshi O, Koichi Y, Hiroshi I, Fujiwara A, Shigeki T 2012 Phys. Rev. Lett. 109 130404

    [21]

    Fujiwara A 2006 J. Phys. A: Math. Gen. 39 12489

    [22]

    Fujiwara A 2011 J. Phys. A: Math. Theor. 44 079501

    [23]

    Pezze L, Smerzi A 2008 Phys. Rev. Lett. 100 073601

  • [1]

    Bouyer P 2014 Gyroscopy and Navigation 5 20

    [2]

    Shao L Y, Luo Y, Zhang Z Y, Zou X H, Luo B, Pan W, Yan L S 2015 Opt. Commun. 336 73

    [3]

    Joseph S 2014 Gen. Relativ. Gravit. 46 1710

    [4]

    Trevor L C, Samuel D P, Robert J H, Byungmoon C, David M J 2014 Opt. Lett. 39 513

    [5]

    Kiarash Z A, Michel J F D 2015 J. Opt. Soc. Am. B 32 339

    [6]

    John R E T, Christopher P 2014 Appl. Phys. B 114 333

    [7]

    Chen K, Chen S X, Wu D W, Yang C Y, Wu H 2016 Acta Phys. Sin. 65 054203 (in Chinese) [陈坤, 陈树新, 吴德伟, 杨春燕, 吴昊2016 65 054203]

    [8]

    Kuznetsov A G, Molchanov A V, Chirkin M V, Izmailov E A 2015 Quantum Electron. 45 78

    [9]

    Bertocchi G, Alibart O, Ostrowsky D B 2006 J. Phys. B 39 1011

    [10]

    Kolkiran, Agarwal G S 2007 Opt. Express 15 6798

    [11]

    Scully M O, Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press) pp101-106

    [12]

    Li X, Voss P L, Sharping J E, Kumar P 2005 Phys. Rev. Lett. 94 053601

    [13]

    Yurke B, McCall S L, Klauder J R 1986 Phys. Rev. A 33 4033

    [14]

    Alex M 2006 Phys. Rev. A 73 033821

    [15]

    Luca P, Augusto S 2014 arXiv 1411.5164v1

    [16]

    Takanori S 2015 Phys. Rev. A 91 042126

    [17]

    Barndor-Nielsen O E, Gill R D 2000 J. Phys. A: General Phys. 33 4481

    [18]

    Helstrom C W 1976 Quantum Detection and Estimation Theory (New York: Academic Press) pp266-276

    [19]

    Nagaoka H 2005 Asymptotic Theory of Quantum Statistical Inference (Singapore: World Scientific Press) pp125-132

    [20]

    Okamoto R, Minako I, Satoshi O, Koichi Y, Hiroshi I, Fujiwara A, Shigeki T 2012 Phys. Rev. Lett. 109 130404

    [21]

    Fujiwara A 2006 J. Phys. A: Math. Gen. 39 12489

    [22]

    Fujiwara A 2011 J. Phys. A: Math. Theor. 44 079501

    [23]

    Pezze L, Smerzi A 2008 Phys. Rev. Lett. 100 073601

  • [1] 吴晓东, 黄端, 黄鹏, 郭迎. 基于实际探测器补偿的离散调制连续变量测量设备无关量子密钥分发方案.  , 2022, 71(24): 240304. doi: 10.7498/aps.71.20221072
    [2] 牛明丽, 王月明, 李志坚. 基于量子Fisher信息的耗散相互作用光-物质耦合常数的估计.  , 2022, 71(9): 090601. doi: 10.7498/aps.71.20212029
    [3] 徐涵, 陈树新, 吴昊, 陈坤, 洪磊. 基于数字非线性锁相环的相干态相位估计.  , 2019, 68(2): 024204. doi: 10.7498/aps.68.20181602
    [4] 李诗宇, 田剑锋, 杨晨, 左冠华, 张玉驰, 张天才. 探测器对量子增强马赫-曾德尔干涉仪相位测量灵敏度的影响.  , 2018, 67(23): 234202. doi: 10.7498/aps.67.20181193
    [5] 郭力仁, 胡以华, 王云鹏, 徐世龙. 基于最大似然的单通道交叠激光微多普勒信号参数分离估计.  , 2018, 67(11): 114202. doi: 10.7498/aps.67.20172639
    [6] 任子良, 秦勇, 黄锦旺, 赵智, 冯久超. 基于广义似然比判决的混沌信号重构方法.  , 2017, 66(4): 040503. doi: 10.7498/aps.66.040503
    [7] 陈坤, 陈树新, 吴德伟, 杨春燕, 吴昊. 基于零拍探测和压缩真空光输入增强Sagnac效应.  , 2016, 65(5): 054203. doi: 10.7498/aps.65.054203
    [8] 刘建强, 王旭阳, 白增亮, 李永民. 时域脉冲平衡零拍探测器的高精度自动平衡.  , 2016, 65(10): 100303. doi: 10.7498/aps.65.100303
    [9] 刘红梅, 杨春花, 刘鑫, 张建奇, 石云龙. 量子点红外探测器的噪声表征.  , 2013, 62(21): 218501. doi: 10.7498/aps.62.218501
    [10] 张岩, 于旭东, 邸克, 李卫, 张靖. 压缩态光场平衡零拍探测的位相锁定.  , 2013, 62(8): 084204. doi: 10.7498/aps.62.084204
    [11] 谭智勇, 郭旭光, 曹俊诚, 黎华, 韩英军. 基于太赫兹量子阱探测器的太赫兹量子级联激光器发射谱研究.  , 2010, 59(4): 2391-2395. doi: 10.7498/aps.59.2391
    [12] 李睿, 翟泽辉, 赵姝瑾, 郜江瑞. 平衡零拍平移测量实验研究.  , 2010, 59(11): 7724-7728. doi: 10.7498/aps.59.7724
    [13] 季海铭, 曹玉莲, 杨涛, 马文全, 曹青, 陈良惠. p型掺杂1.3μm InAs/GaAs量子点激光器的最大模式增益特性的研究.  , 2009, 58(3): 1896-1900. doi: 10.7498/aps.58.1896
    [14] 王郁武, 詹佑邦. 零知识证明的量子身份认证协议.  , 2009, 58(11): 7668-7671. doi: 10.7498/aps.58.7668
    [15] 焦荣珍, 冯晨旭, 马海强. 1.55 μm升频单光子探测量子密钥分配系统的性能研究.  , 2008, 57(3): 1352-1355. doi: 10.7498/aps.57.1352
    [16] 陈进建, 韩正甫, 赵义博, 桂有珍, 郭光灿. 平衡零拍测量对连续变量量子密钥分配的影响.  , 2007, 56(1): 5-9. doi: 10.7498/aps.56.5
    [17] 张德兴. 量子条件振幅算子性质的研究.  , 2004, 53(6): 1647-1651. doi: 10.7498/aps.53.1647
    [18] 胡响明, 彭金生. 量子拍激光:双模亚泊松光.  , 1998, 47(8): 1296-1303. doi: 10.7498/aps.47.1296
    [19] 胡响明. 简并量子拍激光.  , 1992, 41(11): 1782-1788. doi: 10.7498/aps.41.1782
    [20] 朱熙文. 高激发态钠原子的量子拍实验的某些分析.  , 1981, 30(12): 1688-1692. doi: 10.7498/aps.30.1688
计量
  • 文章访问数:  5369
  • PDF下载量:  189
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-30
  • 修回日期:  2016-07-07
  • 刊出日期:  2016-10-05

/

返回文章
返回
Baidu
map