搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用重正交化Lanczos法求解大型非正交归一基稀疏矩阵的特征值问题

焦宝宝

引用本文:
Citation:

用重正交化Lanczos法求解大型非正交归一基稀疏矩阵的特征值问题

焦宝宝

Eigenvalue problems solved by reorthogonalization Lanczos method for the large non-orthonormal sparse matrix

Jiao Bao-Bao
PDF
导出引用
  • 在116Sn原子核壳模型结构下,利用广义辛弱数截断多体空间得到的哈密顿矩阵是一个大型的实对称非正交归一基稀疏矩阵,因此求解大型矩阵的能量特征值和能量特征向量是原子核物理上的一个重要问题.为此,利用重正交化Lanczos法与Cholesky分解法和Elementary transformation法相结合的方法,实现了用内存较小的计算机求解大型实对称非正交归一基稀疏矩阵的特征值和特征向量.用这种方法计算小型矩阵得到的特征值和精确值符合得较好,且运用这个方法计算了116Sn壳模型截断后的大型非正交归一基稀疏矩阵的能量特征值,得到的原子核低态能量与实验测量能量相吻合,计算结果表明Lanczos法在Matlab编程和大型壳模型计算中的精确性和可行性.此方法也有助于求解一些中质核或者重核的低态能量,同时也有利于用内存稍大的计算机求解更大的非正交归一基矩阵的特征值问题.
    Using shell model to calculate the nuclear systems in a large model space is an important method in the field of nuclear physics.On the basis of the nuclear shell model,a large symmetric non-orthonormal sparse Hamiltonian matrix is generated when adopting the generalized seniority method to truncate the many-body space.Calculating the energy eigenvalues and energy eigenvectors of the large symmetric non-orthonormal sparse Hamiltonian matrix is of indispensable steps before energies of nucleus are further calculated.In the mean time,some low-lying energy eigenvalues are always the focus of attention on the occasion of large scale shell model calculation.In this paper,by combining reorthogonalization Lanczos method with Cholesky decomposition method and Elementary transformation method,converting the generalized eigenvalue problems into the standard eigenvalue problems,and transforming the large standard eigenvalue problems into the small standard eigenvalue problems,we successfully calculate the eigenvalues and eigenvectors of large non-orthonormal sparse matrices with the help of computers with limited memory.The values obtained by using this method to calculate the small matrix agree with the exact values,which demonstrates that this method is accurate and can be used to calculate the energy eigenvalues and energy eigenvectors of large symmetric nonorthonormal sparse matrix.We take 116Sn (s=8,the number of unpaired particles,namely the generalized seniority) as an example in which there are active valence neutrons but inert protons at the magic number,and calculate ten of its lowest energy eigenvalues.Through calculation,we find that among these low-lying energy eigenvalues,the lowest energy eigenvalue converges fastest.A comparison between the calculation values and the experiment values shows that the difference between the calculated high-lying energy eigenvalue and its corresponding experimental one arrives at hundreds of keV,while for the low-lying energy eigenvalue,its calculation value can reach an accuracy of a few tens of keV.The results demonstrate that the Lanczos method is feasible in Matlab programming and shell model calculations. The significance of this research lies in the fact that this method will not only greatly help to calculate and obtain the low-lying energy eigenvalues of some medium-mass and heavy nuclei,but also possess great importance in calculating partial eigenvalues involved in large matrices in other theoretical researches and engineering designs.
      Corresponding author: Jiao Bao-Bao, baobaojiao91@126.com
    [1]

    Ring P, Schuck P 1980 The Nuclear Many-body Problem (Berlin: Springer-Verlag) pp36-95

    [2]

    Shen J J, Zhao Y M 2009 Sci. China: Ser. G 52 1477

    [3]

    Shen J J, Arima A, Zhao Y M, Yoshinaga N 2008 Phys. Rev. C 78 044305

    [4]

    Zhang L H, Shen J J, Lei Y, Zhao Y M 2008 Int. J. Mod. Phys. E 17 342

    [5]

    Jia L Y 2013 Phy. Rev. C 88 044303

    [6]

    Pittel S, Sandulescu N 2006 Phys. Rev. C 73 014301

    [7]

    Thakur B, Pittel S, Sandulescu N 2008 Phys. Rev. C 78 041303

    [8]

    Papenbrock T, Dean D J 2005 J. Phys. G: Nucl. Part. Phys. 31 S1377

    [9]

    Kruse M K G, Jurgenson E D, Navratil P, Barrett B R, Ormand W E 2013 Phys. Rev. C 87 044301

    [10]

    Han H, Wu L Y, Song N N 2014 Acta Phys. Sin. 63 138901 (in Chinese) [韩华, 吴翎燕, 宋宁宁2014 63 138901]

    [11]

    Li S, Wang B, Hu J Z 2003 Appl. Math. Mech. 24 92

    [12]

    Morris N F 1990 J. Struct. Eng. 116 2049

    [13]

    Jia L Y 2015 J. Phys. G: Nucl. Part. Phys. 42 115105

    [14]

    Qi C, Xu Z X 2012 Phys. Rev. C 86 044323

    [15]

    Simon H D 1984 Math. Comput. 42 115

    [16]

    Zhao X H, Chen F W, Wu J, Zhou Q L 2008 Acta Phys. Chim. Sin. 24 823 (in Chinese) [赵小红, 陈飞武, 吴健, 周巧龙2008物理化学学报24 823]

    [17]

    Cao Z H 1980 Eigenvalue Problems of Matrices (Shanghai: Shanghai Scientific and Technical Publishers) pp212-220(in Chinese) [曹志浩1980矩阵特征值问题(上海:上海科学技术出版社)第212–220页]

    [18]

    Harbrecht H, Peters M, Schneider R 2012 Appl. Numer. Math. 62 428

    [19]

    D'azevedo E, Dongarra J 2000 Pract. Exper. 12 1481

    [20]

    Schweizer S, Kussmann J, Doser B, Ochsenfeld C 2008 J. Comput. Chem. 29 1004

    [21]

    Liu D, Gabrielli L H, Lipson M, Johnson S G 2013 Opt. Exp. 21 12

    [22]

    Giraud L, Langou J 2005 Comput. Math. Appl. 50 1069

    [23]

    Hoffmanm W, Amsterdam 1989 Computing 41 335

    [24]

    Xu S F 1995 Theory and Method of Matrix Calculation (Beijing: Peking University Publishers) pp307-319(in Chinese) [徐树方1995矩阵计算的理论与方法(北京:北京大学出版社)第307–319页]

    [25]

    Qiu Z, Wang X 2005 J. Sound Vib. 282 381

  • [1]

    Ring P, Schuck P 1980 The Nuclear Many-body Problem (Berlin: Springer-Verlag) pp36-95

    [2]

    Shen J J, Zhao Y M 2009 Sci. China: Ser. G 52 1477

    [3]

    Shen J J, Arima A, Zhao Y M, Yoshinaga N 2008 Phys. Rev. C 78 044305

    [4]

    Zhang L H, Shen J J, Lei Y, Zhao Y M 2008 Int. J. Mod. Phys. E 17 342

    [5]

    Jia L Y 2013 Phy. Rev. C 88 044303

    [6]

    Pittel S, Sandulescu N 2006 Phys. Rev. C 73 014301

    [7]

    Thakur B, Pittel S, Sandulescu N 2008 Phys. Rev. C 78 041303

    [8]

    Papenbrock T, Dean D J 2005 J. Phys. G: Nucl. Part. Phys. 31 S1377

    [9]

    Kruse M K G, Jurgenson E D, Navratil P, Barrett B R, Ormand W E 2013 Phys. Rev. C 87 044301

    [10]

    Han H, Wu L Y, Song N N 2014 Acta Phys. Sin. 63 138901 (in Chinese) [韩华, 吴翎燕, 宋宁宁2014 63 138901]

    [11]

    Li S, Wang B, Hu J Z 2003 Appl. Math. Mech. 24 92

    [12]

    Morris N F 1990 J. Struct. Eng. 116 2049

    [13]

    Jia L Y 2015 J. Phys. G: Nucl. Part. Phys. 42 115105

    [14]

    Qi C, Xu Z X 2012 Phys. Rev. C 86 044323

    [15]

    Simon H D 1984 Math. Comput. 42 115

    [16]

    Zhao X H, Chen F W, Wu J, Zhou Q L 2008 Acta Phys. Chim. Sin. 24 823 (in Chinese) [赵小红, 陈飞武, 吴健, 周巧龙2008物理化学学报24 823]

    [17]

    Cao Z H 1980 Eigenvalue Problems of Matrices (Shanghai: Shanghai Scientific and Technical Publishers) pp212-220(in Chinese) [曹志浩1980矩阵特征值问题(上海:上海科学技术出版社)第212–220页]

    [18]

    Harbrecht H, Peters M, Schneider R 2012 Appl. Numer. Math. 62 428

    [19]

    D'azevedo E, Dongarra J 2000 Pract. Exper. 12 1481

    [20]

    Schweizer S, Kussmann J, Doser B, Ochsenfeld C 2008 J. Comput. Chem. 29 1004

    [21]

    Liu D, Gabrielli L H, Lipson M, Johnson S G 2013 Opt. Exp. 21 12

    [22]

    Giraud L, Langou J 2005 Comput. Math. Appl. 50 1069

    [23]

    Hoffmanm W, Amsterdam 1989 Computing 41 335

    [24]

    Xu S F 1995 Theory and Method of Matrix Calculation (Beijing: Peking University Publishers) pp307-319(in Chinese) [徐树方1995矩阵计算的理论与方法(北京:北京大学出版社)第307–319页]

    [25]

    Qiu Z, Wang X 2005 J. Sound Vib. 282 381

  • [1] 樊久扬, 张玉贤, 冯晓丽, 黄志祥. 用于分析单轴/双轴双各向异性媒质电磁特性的快速传输矩阵法.  , 2024, 73(24): . doi: 10.7498/aps.73.20241346
    [2] 张慧洁, 贺衎. 哈密顿量宇称-时间对称性的刻画.  , 2024, 73(4): 040302. doi: 10.7498/aps.73.20230458
    [3] 李竞, 丁海涛, 张丹伟. 非厄米哈密顿量中的量子Fisher信息与参数估计.  , 2023, 72(20): 200601. doi: 10.7498/aps.72.20230862
    [4] 董珊珊, 秦立国, 刘福窑, 龚黎华, 黄接辉. 哈密顿量诱导的量子演化速度.  , 2023, 72(22): 220301. doi: 10.7498/aps.72.20231009
    [5] 廖庆洪, 邓伟灿, 文健, 周南润, 刘念华. 纳米机械谐振器耦合量子比特非厄米哈密顿量诱导的声子阻塞.  , 2019, 68(11): 114203. doi: 10.7498/aps.68.20182263
    [6] 孙娟, 李晓霞, 张金浩, 申玉卓, 李艳雨. 多层单向耦合星形网络的特征值谱及同步能力分析.  , 2017, 66(18): 188901. doi: 10.7498/aps.66.188901
    [7] 徐明明, 陆君安, 周进. 两层星形网络的特征值谱及同步能力.  , 2016, 65(2): 028902. doi: 10.7498/aps.65.028902
    [8] 郝本建, 李赞, 万鹏武, 司江勃. 传感器网络基于特征值分解的信号被动定位技术.  , 2014, 63(5): 054304. doi: 10.7498/aps.63.054304
    [9] 何圣仲, 周国华, 许建平, 吴松荣, 阎铁生, 张希. 谷值V2控制Boost变换器的精确建模与动力学分析.  , 2014, 63(17): 170503. doi: 10.7498/aps.63.170503
    [10] 梁义, 王兴元. 基于低阶矩阵最大特征值的复杂网络牵制混沌同步.  , 2012, 61(3): 038901. doi: 10.7498/aps.61.038901
    [11] 季颖, 毕勤胜. 高维广义蔡氏电路中的快慢动力学行为及其分岔分析.  , 2012, 61(1): 010202. doi: 10.7498/aps.61.010202
    [12] 朱廷祥, 吴晔, 肖井华. 一种有效的提高复杂网络同步能力的自适应方法.  , 2012, 61(4): 040502. doi: 10.7498/aps.61.040502
    [13] 陈增军, 宁西京. 非厄米哈密顿量的物理意义.  , 2003, 52(11): 2683-2686. doi: 10.7498/aps.52.2683
    [14] 赖建文, 周世平, 李国辉, 徐得名. 非重正交的李雅普诺夫指数谱的计算方法.  , 2000, 49(12): 2328-2332. doi: 10.7498/aps.49.2328
    [15] 蒋祺, 陶瑞宝. 有任意带满的紧束缚哈密顿量的实空间重整化群研究.  , 1989, 38(11): 1778-1784. doi: 10.7498/aps.38.1778
    [16] 周晴. 二元合金振动哈密顿量的对角化.  , 1988, 37(6): 1003-1009. doi: 10.7498/aps.37.1003
    [17] 王正行. 用变分法讨论超导体隧道体系的近似哈密顿量.  , 1979, 28(5): 48-58. doi: 10.7498/aps.28.48
    [18] 林福成, 祝继康, 黄武汉. 推广的等效自旋哈密顿.  , 1964, 20(11): 1114-1123. doi: 10.7498/aps.20.1114
    [19] 于敏. 关于重原子核的壳结构理论.  , 1959, 15(8): 420-439. doi: 10.7498/aps.15.420
    [20] 杨立铭. 原子核内核子轨道角動量分布与核子密度.  , 1953, 9(4): 302-316. doi: 10.7498/aps.9.302
计量
  • 文章访问数:  7769
  • PDF下载量:  796
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-27
  • 修回日期:  2016-07-05
  • 刊出日期:  2016-10-05

/

返回文章
返回
Baidu
map