搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Rashba自旋-轨道耦合下二维双极化子的基态性质

乌云其木格 辛伟 额尔敦朝鲁

引用本文:
Citation:

Rashba自旋-轨道耦合下二维双极化子的基态性质

乌云其木格, 辛伟, 额尔敦朝鲁

Properties of the ground state of two-dimensional bipolaron with Rashba spin-orbit coupling

Wuyunqimuge, Xin Wei, Eerdunchaolu
PDF
导出引用
  • 在考虑Rashba自旋-轨道耦合效应下,基于Lee-Low-Pines变换,采用Pekar型变分法研究了量子点中双极化子的基态性质. 数值结果表明,在电子-声子强耦合(耦合常数6)条件下,量子点中形成稳定双极化子结构的条件(结合能Eb0)自然满足;双极化子的结合能Eb随量子点受限强度0、介质的介电常数比和电子- 声子耦合强度 的增大而增加,随Rashba自旋-轨道耦合常数R的增加而表现为直线增加和减小两种截然相反的情形;Rashba效应使双极化子的基态能量分裂为E(),E()和E()三条能级,分别对应两电子的自旋取向为向上、向下和反平行三种情形;基态能量的绝对值|E|随 和 的增加而增大,随R的增加而表现为直线增加和减小两种截然相反的情形;在双极化子的基态能量E 中,电子-声子耦合能所占据的比例明显大于Rashba自旋-轨道耦合能所占比例,但电子-声子耦合与Rashba自旋-轨道耦合间相互渗透、彼此影响显著.
    In this paper, based on the Lee-Low-Pines transformation, the ground-state properties of the bipolaron with the Rashba spin-orbit coupling effect in the quantum dot are studied by using the Pekar variational method. The expressions for the ground-state interaction energy Eint and binding energy Eb of the bipolaron are derived. The results show that Eint is composed of four parts: the electron-longitudinal optical (LO) phonon coupling energy Ee-ph, confinement potential of the quantum dot Ecouf, Coulomb energy between two electrons Ecoul and additional term in the Rashba spin splitting energy ER-ph originating from the LO phonon, where Ecouf and Ecoul are positive definite. These indicate that Ecouf and Ecoul are the repulsive potential of the bipolaron. Generally, it is unable to form the electron-electron coupling structure in the quantum dot because two electrons repel each other by means of the screened Coulomb potential and confinement potential of the quantum dot. However, the numerical results show that the ground-state binding energy of the bipolaron Eb is greater than zero under the condition of the electron-phonon strong coupling (coupling strength 6), so the condition of forming the steady bipolaron structure in quantum dots is naturally met (binding energy Eb 0). In addition, the ground-state energy of the bipolaron E is always less than zero, thus the ground-state biplaron in the quantum dot is in the steady bound state. This can be explained by the physical mechanism. Firstly, the electron-LO phonon coupling energy Ee-ph in the ground-state interaction energy of the bipolaron is always negative. Secondly, the electron-LO phonon coupling interaction in the low-dimensional structures of II-VI semiconductors is great enough (generally 6.0) so that the electron-LO phonon coupling energy Ee-ph is dominant in the ground-state energy E and, therefore the screened Coulomb potential and confinement potential of the quantum dot can be overcome and a steady electron-electron structure can be formed. The numerical results also indicate that the binding energy of the bipolaron Eb increases with increasing the confinement strength of quantum dot 0, dielectric constant ratio of medium and electronphonon coupling strength , but it shows the direct opposite cases from linear increase to decrease with increasing the Rashba spin-obit coupling strength R; the ground-state energy of the bipolaron splits into three energy levels due to the Rashba effect: E(), E() and E(), which correspond to spin orientations of two electrons respectively: up, down and antiparallel; the absolute value of ground-state energy |E| increases with increasing and , but it shows the direct opposite cases from linear increase to decrease with increasing the Rashba spin-obit coupling strength R; the electron-phonon coupling energy obviously accounts for a larger proportion than that of the Rashba spin-obit coupling energy in the ground-state energy of the bipolaron, but the electron-phonon coupling and Rashba spin-obit coupling infiltrate each other and influence each other significantly. In short, the electron in narrow-gap II-VI heterojunctions have higher Rashba spin splitting energy and larger application range. For these quantum dot structures, it is impossible and unnecessary to inhibit the formation of bipolarons. It is more accurate that the bipolaron is chosen as the elementary excitation than the single polaron when investigating the electron-phonon interaction and Rashba spin-orbit coupling, and the bipolaron has more practical significances and potential application values.
      通信作者: 额尔敦朝鲁, eerdunchaolu@163.com
    • 基金项目: 河北省自然科学基金(批准号:E2013407119)和河北省高校科学技术研究项目(批准号:ZD20131008,Z2015149,Z2015219)资助的课题.
      Corresponding author: Eerdunchaolu, eerdunchaolu@163.com
    • Funds: Project supported by the Natural Science Foundation of Hebei Province, China (Grant No. E2013407119), and the Items of Institution of higher Education Scientific Research of HeBei Province, China (Grant Nos. ZD20131008, Z2015149, Z2015219).
    [1]

    Rashba E I, Tela F T 1960 Sov. Phys. Solid State 2 1109

    [2]

    Bychkov Y A, Rashba E I 1984 J. Phys. C 17 6039

    [3]

    Das B, Datta S, Reifenberger R 1990 Phys. Rev. B 41 8278

    [4]

    Datta S, Das B 1990 Appl. Phys. Lett. 56 665

    [5]

    Nitta J, Akazaki T, Takayanagi H, Enoki T 1997 Phy. Rev. Lett. 78 1335

    [6]

    Engels G, Lange J, Schapers T, Lth H 1997 Phys. Rev. B 55 R1958

    [7]

    Hu C M, Nitta J, Akazaki T, Takayanagi H, Osaka J, Pfeffer P, Zawadzki W 1999 Phys. Rev. B 60 7736

    [8]

    Winkler R 2000 Phys. Rev. B 62 4245

    [9]

    Rossler U, Malcher F, Lommer G 1989 High Magnetic Fields in Semiconductor Physics II (Berlin: Springer-Verlag) p376

    [10]

    Zhang X C, Pfeufer-Jeschke A, Ortner K, Hock V, Buhmann H, Becker C R, Landwehr G 2001 Phys. Rev. B 63 245305

    [11]

    Qiu Z J, Gui Y S, Shu X Z, Dai N, Guo S L, Chu J H 2004 Acta Phys. Sin. 53 1186 (in Chinese) [仇志军, 桂永胜, 疏小舟, 戴宁, 郭少令, 褚君浩 2004 53 1186]

    [12]

    Tsitsishvili E, Lozano G S, Gogolin A O 2004 Phys. Rev. B 70 115316

    [13]

    Manvir S, Kushwaha 2008 J. Appl. Phys. 104 083714

    [14]

    Li J L, Li Y X 2010 Chin. Phys. Lett. 27 057202

    [15]

    Hassanabadi H, Rahimov H, Zarrinkamar S 2012 Few-body Syst. 52 87

    [16]

    Yin J W, Li W P, Yu Y F, Xiao J L 2011 J. Low Temp. Phys. 163 53

    [17]

    Shan S P, Chen S H, Xiao J L 2014 J. Low Temp. Phys. 176 93

    [18]

    Fai L C, Teboul V, Monteil A, Maabou A, Nsangou I 2005 Condens. Matter Phys. 8 639

    [19]

    Pan J S 1985 Phys. Status. Solid B 127 307

    [20]

    Zhao Y W, Han C, Xin W, Eerdunchaolu 2014 Superlattices Microstruct. 74 198

    [21]

    Eerdunchaolu, Bai X F, Han Chao 2014 Acta Phys. Sin. 63 027501 (in Chinese) [额尔敦朝鲁, 白旭芳, 韩超 2014 63 027501]

    [22]

    Lommer G, Malcher F, Rossler U 1988 Phys. Rev. Lett. 60 728

    [23]

    Sun Q F, Wang J, Guo H 2005 Phys. Rev. B 71 165310

    [24]

    Voskoboynikov O, Lee C P, Tretyak O 2001 Phys. Rev. B 63 165306

    [25]

    Lee T D, Low F M, Pines D 1953 Phys. Rev. 90 297

    [26]

    Yildirim T, Ercelebi A 1999 J. Phys. Conden. Matt. 3 1271

    [27]

    Adamowski J 1989 Phys. Rev. B 39 3649

  • [1]

    Rashba E I, Tela F T 1960 Sov. Phys. Solid State 2 1109

    [2]

    Bychkov Y A, Rashba E I 1984 J. Phys. C 17 6039

    [3]

    Das B, Datta S, Reifenberger R 1990 Phys. Rev. B 41 8278

    [4]

    Datta S, Das B 1990 Appl. Phys. Lett. 56 665

    [5]

    Nitta J, Akazaki T, Takayanagi H, Enoki T 1997 Phy. Rev. Lett. 78 1335

    [6]

    Engels G, Lange J, Schapers T, Lth H 1997 Phys. Rev. B 55 R1958

    [7]

    Hu C M, Nitta J, Akazaki T, Takayanagi H, Osaka J, Pfeffer P, Zawadzki W 1999 Phys. Rev. B 60 7736

    [8]

    Winkler R 2000 Phys. Rev. B 62 4245

    [9]

    Rossler U, Malcher F, Lommer G 1989 High Magnetic Fields in Semiconductor Physics II (Berlin: Springer-Verlag) p376

    [10]

    Zhang X C, Pfeufer-Jeschke A, Ortner K, Hock V, Buhmann H, Becker C R, Landwehr G 2001 Phys. Rev. B 63 245305

    [11]

    Qiu Z J, Gui Y S, Shu X Z, Dai N, Guo S L, Chu J H 2004 Acta Phys. Sin. 53 1186 (in Chinese) [仇志军, 桂永胜, 疏小舟, 戴宁, 郭少令, 褚君浩 2004 53 1186]

    [12]

    Tsitsishvili E, Lozano G S, Gogolin A O 2004 Phys. Rev. B 70 115316

    [13]

    Manvir S, Kushwaha 2008 J. Appl. Phys. 104 083714

    [14]

    Li J L, Li Y X 2010 Chin. Phys. Lett. 27 057202

    [15]

    Hassanabadi H, Rahimov H, Zarrinkamar S 2012 Few-body Syst. 52 87

    [16]

    Yin J W, Li W P, Yu Y F, Xiao J L 2011 J. Low Temp. Phys. 163 53

    [17]

    Shan S P, Chen S H, Xiao J L 2014 J. Low Temp. Phys. 176 93

    [18]

    Fai L C, Teboul V, Monteil A, Maabou A, Nsangou I 2005 Condens. Matter Phys. 8 639

    [19]

    Pan J S 1985 Phys. Status. Solid B 127 307

    [20]

    Zhao Y W, Han C, Xin W, Eerdunchaolu 2014 Superlattices Microstruct. 74 198

    [21]

    Eerdunchaolu, Bai X F, Han Chao 2014 Acta Phys. Sin. 63 027501 (in Chinese) [额尔敦朝鲁, 白旭芳, 韩超 2014 63 027501]

    [22]

    Lommer G, Malcher F, Rossler U 1988 Phys. Rev. Lett. 60 728

    [23]

    Sun Q F, Wang J, Guo H 2005 Phys. Rev. B 71 165310

    [24]

    Voskoboynikov O, Lee C P, Tretyak O 2001 Phys. Rev. B 63 165306

    [25]

    Lee T D, Low F M, Pines D 1953 Phys. Rev. 90 297

    [26]

    Yildirim T, Ercelebi A 1999 J. Phys. Conden. Matt. 3 1271

    [27]

    Adamowski J 1989 Phys. Rev. B 39 3649

  • [1] 贺亚萍, 陈明霞, 潘杰锋, 李冬, 林港钧, 黄新红. Rashba自旋-轨道耦合调制的单层半导体纳米结构中电子的自旋极化效应.  , 2023, 72(2): 028503. doi: 10.7498/aps.72.20221381
    [2] 邹双阳, Muhammad Arshad Kamran, 杨高岭, 刘瑞斌, 石丽洁, 张用友, 贾宝华, 钟海政, 邹炳锁. II-VI族稀磁半导体微纳结构中的激子磁极化子及其发光.  , 2019, 68(1): 017101. doi: 10.7498/aps.68.20181211
    [3] 姜丽娜, 张玉滨, 董顺乐. 有机自旋器件磁性渗透层中双极化子对自旋极化输运的影响.  , 2015, 64(14): 147104. doi: 10.7498/aps.64.147104
    [4] 白旭芳, 乌云其木格, 辛伟, 额尔敦朝鲁. Rashba自旋-轨道相互作用影响下量子盘中强耦合磁极化子性质的研究.  , 2014, 63(17): 177803. doi: 10.7498/aps.63.177803
    [5] 李明, 张荣, 刘斌, 傅德颐, 赵传阵, 谢自力, 修向前, 郑有炓. AlGaN/GaN量子阱中子带的Rashba自旋劈裂和子带间自旋轨道耦合作用研究.  , 2012, 61(2): 027103. doi: 10.7498/aps.61.027103
    [6] 张勇, 刘亚莉, 焦威, 陈林, 熊祖洪. 有机发光器件的磁电导效应.  , 2012, 61(11): 117106. doi: 10.7498/aps.61.117106
    [7] 张勇, 刘荣, 雷衍连, 陈平, 张巧明, 熊祖洪. 基于Alq3的有机发光二极管的磁电导效应.  , 2010, 59(8): 5817-5822. doi: 10.7498/aps.59.5817
    [8] 邓艳平, 吕彬彬, 田强. 非对称方势阱中的激子及其与声子的相互作用.  , 2010, 59(7): 4961-4966. doi: 10.7498/aps.59.4961
    [9] 黄书文, 刘涛, 汪克林. DNA模型的有限格点系的严格对角化解.  , 2010, 59(3): 2033-2037. doi: 10.7498/aps.59.2033
    [10] 李维峰, 梁迎新, 金勇, 魏建华. AlxGa1-xAs:Si 中DX中心的双极化子机制及统计分析.  , 2010, 59(12): 8850-8855. doi: 10.7498/aps.59.8850
    [11] 陈华, 杜磊, 庄奕琪, 牛文娟. Rashba自旋轨道耦合作用下电荷流散粒噪声与自旋极化的关系研究.  , 2009, 58(8): 5685-5692. doi: 10.7498/aps.58.5685
    [12] 额尔敦朝鲁. 温度和极化子效应对准二维强耦合激子基态的影响.  , 2008, 57(1): 416-424. doi: 10.7498/aps.57.416
    [13] 龙姝明, 冉启武, 熊晓军. 基态球谐振子的空间“塌陷”.  , 2005, 54(3): 1044-1047. doi: 10.7498/aps.54.1044
    [14] 刘玉孝, 赵振华, 王永强, 陈玉红. 氦原子和类氦离子基态能量的变分计算及相对论修正.  , 2005, 54(6): 2620-2624. doi: 10.7498/aps.54.2620
    [15] 王鹿霞, 张大成, 刘德胜, 韩圣浩, 解士杰. 基态非简并聚合物中的极化子和双极化子动力学.  , 2003, 52(10): 2547-2552. doi: 10.7498/aps.52.2547
    [16] 龙姝明. 同调谐振子参数与基态能量的关系.  , 2002, 51(10): 2256-2255. doi: 10.7498/aps.51.2256
    [17] 刘德胜, 赵俊卿, 魏建华, 解士杰, 梅良模. 聚对苯乙炔的基态、极化子与双极化子激发态及其稳定性.  , 1999, 48(7): 1327-1333. doi: 10.7498/aps.48.1327
    [18] 黄卓和, 陈传誉, 陈芝得, 张树群. 稳恒电、磁场中量子阱内极化子的基态能量.  , 1994, 43(1): 91-98. doi: 10.7498/aps.43.91
    [19] 陈传誉, 金佩琬. 二维极化子在磁场中的基态能量.  , 1990, 39(5): 814-822. doi: 10.7498/aps.39.814
    [20] 解士杰, 梅良模, 孙鑫. 聚对苯撑[poly(p-phenylene)]的基态、极化子和双极化子激发态.  , 1989, 38(9): 1506-1509. doi: 10.7498/aps.38.1506
计量
  • 文章访问数:  6682
  • PDF下载量:  178
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-04
  • 修回日期:  2016-05-24
  • 刊出日期:  2016-09-05

/

返回文章
返回
Baidu
map