搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

量子热声微循环的优化性能

舒安庆 吴锋

引用本文:
Citation:

量子热声微循环的优化性能

舒安庆, 吴锋

Optimization of the performance of quantum thermoacoustic micro-cycle

Shu An-Qing, Wu Feng
PDF
导出引用
  • 热声技术以无运动部件和采用与环境友好的工质这两个突出特点,催生着动力和机械装置的重大变革. 量子力学是揭示微观世界本质规律的有力工具,为了揭示热声微循环的本质规律,根据量子力学基本原理对量子热声微循环的优化性能进行了较深入的研究. 把热声微团看作是许多服从量子力学规律的热声子,建立了热声微循环的量子力学理论模型. 借助于二能级谐振子系统薛定谔方程的能量解以及Gibbs热平衡概率分布导出了量子热声微循环输出功率、热效率以及临界温度梯度的解析表达式,得到了无量纲输出功率和热效率的优化关系. 量子热声微循环输出功率关于热效率、高温端温度和低温端温度都存在极大值. 所得结果不但为热声理论提供了一个新的研究方法,而且拓宽了量子热力学的应用领域.
    The purpose of this paper is to optimize the performance of a quantum thermoacoustic micro-cycle. Thermoacoustic devices, such as thermoacoustic engines, thermoacoustic refrigerators, and thermoacoustic heat pumps are a new class of mechanical equipments without moving part and pollution. The thermoacoustic technology associated with these devices will hasten significant revolution in power engineering and mechanical devices. The work substance of a thermoacoustic device is composed of a number of parcels of fluid. Each parcel consists of a lot of molecules or atoms. The thermodynamic cycle is realized by the heat exchange between the parcel and the solid wall of the channel. The thermodynamic cycle of the parcel of fluid is called the thermoacoustic micro-cycle. The thermodynamic behavior of a thermoacoustic system may be described by studying that of the thermoacoustic micro-cycle. It is necessary to study the model and performance of the thermoacoustic micro-cycle in order to promote the development of thermoacoustic technology. The quantum mechanics, which was one of the great achievements in the 20 th century, can reveal the secret of the micro particle world. Quantum thermodynamics is an inter-discipline that combines quantum dynamics and thermodynamics. It provides a useful tool for analyzing the quantum cycles and devices. In this paper, the method of the quantum thermodynamics is employed to analyze the performance of a quantum thermoacoustic micro-cycle. The thermoacoustic parcel is modeled as a gas composed of many micro particles, which abide by the quantum mechanics. These particles are referred to as thermal phonons. Thermal phonons are bosons. The evolution of each thermal phonon must satisfy the Schrö dinger equation in quantum mechanics. The quantum mechanics model of the thermoacoustic micro-cycle, which is called the quantum thermoacoustic micro-cycle, is established in this paper. The quantum thermoacoustic micro-cycle consists of two constant force processes and two quantum adiabatic processes. The quantum thermodynamical behavior and evolution of the thermal phonon in a one-dimensional harmonic trap are investigated based on the Schrö dinger equation and the two-eigenstates system. The energy eigenvalue of the thermal phonon are employed. The analytical expressions of the optimal dimensionless power output P*, the thermal efficiency η and the critical temperature gradient (dT/dx)ex for the quantum thermoacoustic micro-cycle are derived by considering Gibbs probability distribution. The optimal relationship between dimensionless power output P* and thermal efficiency η is obtained. The analysis shows that both the power output and the thermal efficiency decrease with the increase of width of the harmonic trap L1. One can find that the characteristic curve of P*-η is parabolic-shaped. There exist a maximum dimensionless power output P* and the corresponding frequency η. It is noteworthy that there is a critical temperature gradient for the quantum thermoacoustic micro-cycle. The critical temperature gradient is important because it is the boundary between the heat engine and the heat pump. The optimal design and these operating conditions for the quantum thermoacoustic micro-cycle are determined in this paper. The results provide a new method for studying the thermoacoustics by means of the quantum thermodynamics, thereby broadening the application range of the quantum thermodynamic.
      通信作者: 吴锋, wufeng@wit.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51176143)资助的课题.
      Corresponding author: Wu Feng, wufeng@wit.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51176143).
    [1]

    Swift G W 1988 J. Acoust. Soc. Am. 84 1145

    [2]

    Wu F, Li Q, Guo F Z, Shu A Q 2012 J. Wuhan Inst. Tech. 34 1 (in Chinese) [吴锋, 李青, 郭方中, 舒安庆 2012 武汉工程大学学报 34 1]

    [3]

    Wu F, Shu A Q, Guo F Z, Wang T 2014 Energy 68 370

    [4]

    Yang Z C, Wu F, Guo F Z, Zhang C P 2011 Acta Phys. Sin. 60 084303 (in Chinese) [杨志春, 吴锋, 郭方中, 张春萍 2011 60 084303]

    [5]

    Wang T, Wu F, Li D Y, Chen H, Lin J 2015 Acta Phys. Sin. 64 044301 (in Chinese) [汪拓, 吴锋, 李端勇, 陈浩, 林杰 2015 64 044301]

    [6]

    Li Q, Wu F, Guo F Z, Wu C, Wu J 2003 Open Syst. Inf. Dyn. 10 391

    [7]

    Wang T, Wu F, Fei J H, Lin J 2013 J. Mech. Eng. 49 183 (in Chinese) [汪拓, 吴锋, 费景华, 林杰 2013 机械工程学报 49 183]

    [8]

    Kan X X, Wu F, Zheng X Q, Shu A Q 2009 J. Wuhan Univ. Tech. 31 130 (in Chinese) [阚绪献, 吴锋, 张晓青, 舒安庆 2009 武汉理工大学学报 31 130]

    [9]

    Liu X W, Chen L G, Wu F, Sun F R 2014 J. Energy Inst. 87 69

    [10]

    Himangshu P G, Upendra H 2013 Phys. Rev. A 88 013842

    [11]

    Ronnie K 2013 Entropy 15 2100

    [12]

    Wang J H, Xiong S Q, He J Z, Liu J T 2012 Acta Phys. Sin. 61 080509 (in Chinese) [王建辉, 熊双全, 何济州, 刘江涛 2012 61 080509]

    [13]

    Wu F, Wang T, Chen L G, Liu X W 2014 J. Mech. Eng. 50 150 (in Chinese) [吴锋, 汪拓, 陈林根, 刘晓威 2014 机械工程学报 50 150]

    [14]

    Lin B, Chen J 2005 Phys. Scr. 71 12

    [15]

    Wu F, Yang Z, Chen L G, Liu X W, Wu S 2010 J. Therm. Sci. 14 879

    [16]

    Massimiliano E, Maicol A O, Michael G 2015 Phys. Rev. Lett. 114 080602

    [17]

    Wu F, Chen L, Li D 2009 Appl. Energy 86 1119

    [18]

    Tien D, Kieu 2004 Phys. Rev. Lett. 93 140403

    [19]

    Guo F Z, Li Q 2007 Heat Dynamics (Wuhan: Huazhong University of Science and Technology Press) p198 (in Chinese) [郭方中, 李青 2007 热动力学 (武汉: 华中科技大学出版社) 第198页]

    [20]

    Zeng J Y 2000 Quantum Mechanics (Vol. 1) (3th Ed.) (Beijing: Science Press) pp109-113 (in Chinese) [曾谨言 2000 量子力学 (卷I) (第三版)(北京: 科学出版社) 第109-113页]

    [21]

    Xiong H W, Liu S J, Huang G X, Xu Z X 2002 Phys. Rev. A 65 033609

    [22]

    Bender, C M, Brody D C, Meister B K 2000 J. Phys. A: Math. Gen. 33 4427

    [23]

    Wu F, Chen L G, Sun F R, Yu J Y 2008 Study of Finite-time Thermodynamics on Stirling Machines (Beijing: Chemical Industry Press) pp185-188 (in Chinese) [吴锋, 陈林根, 孙丰瑞, 喻九阳 2008 斯特林机的有限时间热力学优化 (北京: 化学工业出版社) 第185-188页]

  • [1]

    Swift G W 1988 J. Acoust. Soc. Am. 84 1145

    [2]

    Wu F, Li Q, Guo F Z, Shu A Q 2012 J. Wuhan Inst. Tech. 34 1 (in Chinese) [吴锋, 李青, 郭方中, 舒安庆 2012 武汉工程大学学报 34 1]

    [3]

    Wu F, Shu A Q, Guo F Z, Wang T 2014 Energy 68 370

    [4]

    Yang Z C, Wu F, Guo F Z, Zhang C P 2011 Acta Phys. Sin. 60 084303 (in Chinese) [杨志春, 吴锋, 郭方中, 张春萍 2011 60 084303]

    [5]

    Wang T, Wu F, Li D Y, Chen H, Lin J 2015 Acta Phys. Sin. 64 044301 (in Chinese) [汪拓, 吴锋, 李端勇, 陈浩, 林杰 2015 64 044301]

    [6]

    Li Q, Wu F, Guo F Z, Wu C, Wu J 2003 Open Syst. Inf. Dyn. 10 391

    [7]

    Wang T, Wu F, Fei J H, Lin J 2013 J. Mech. Eng. 49 183 (in Chinese) [汪拓, 吴锋, 费景华, 林杰 2013 机械工程学报 49 183]

    [8]

    Kan X X, Wu F, Zheng X Q, Shu A Q 2009 J. Wuhan Univ. Tech. 31 130 (in Chinese) [阚绪献, 吴锋, 张晓青, 舒安庆 2009 武汉理工大学学报 31 130]

    [9]

    Liu X W, Chen L G, Wu F, Sun F R 2014 J. Energy Inst. 87 69

    [10]

    Himangshu P G, Upendra H 2013 Phys. Rev. A 88 013842

    [11]

    Ronnie K 2013 Entropy 15 2100

    [12]

    Wang J H, Xiong S Q, He J Z, Liu J T 2012 Acta Phys. Sin. 61 080509 (in Chinese) [王建辉, 熊双全, 何济州, 刘江涛 2012 61 080509]

    [13]

    Wu F, Wang T, Chen L G, Liu X W 2014 J. Mech. Eng. 50 150 (in Chinese) [吴锋, 汪拓, 陈林根, 刘晓威 2014 机械工程学报 50 150]

    [14]

    Lin B, Chen J 2005 Phys. Scr. 71 12

    [15]

    Wu F, Yang Z, Chen L G, Liu X W, Wu S 2010 J. Therm. Sci. 14 879

    [16]

    Massimiliano E, Maicol A O, Michael G 2015 Phys. Rev. Lett. 114 080602

    [17]

    Wu F, Chen L, Li D 2009 Appl. Energy 86 1119

    [18]

    Tien D, Kieu 2004 Phys. Rev. Lett. 93 140403

    [19]

    Guo F Z, Li Q 2007 Heat Dynamics (Wuhan: Huazhong University of Science and Technology Press) p198 (in Chinese) [郭方中, 李青 2007 热动力学 (武汉: 华中科技大学出版社) 第198页]

    [20]

    Zeng J Y 2000 Quantum Mechanics (Vol. 1) (3th Ed.) (Beijing: Science Press) pp109-113 (in Chinese) [曾谨言 2000 量子力学 (卷I) (第三版)(北京: 科学出版社) 第109-113页]

    [21]

    Xiong H W, Liu S J, Huang G X, Xu Z X 2002 Phys. Rev. A 65 033609

    [22]

    Bender, C M, Brody D C, Meister B K 2000 J. Phys. A: Math. Gen. 33 4427

    [23]

    Wu F, Chen L G, Sun F R, Yu J Y 2008 Study of Finite-time Thermodynamics on Stirling Machines (Beijing: Chemical Industry Press) pp185-188 (in Chinese) [吴锋, 陈林根, 孙丰瑞, 喻九阳 2008 斯特林机的有限时间热力学优化 (北京: 化学工业出版社) 第185-188页]

  • [1] 谢冰鸿, 徐国凯, 肖绍球, 喻忠军, 朱大立. 非线性磁电换能器模型的谐振磁电效应分析及其输出功率优化.  , 2023, 72(11): 117501. doi: 10.7498/aps.72.20222277
    [2] 左春彦, 高飞, 戴忠玲, 王友年. 高功率微波输出窗内侧击穿动力学的PIC/MCC模拟研究.  , 2018, 67(22): 225201. doi: 10.7498/aps.67.20181260
    [3] 范洪义, 梁祖峰. 相空间中对应量子力学基本对易关系的积分变换及求Wigner函数的新途径.  , 2015, 64(5): 050301. doi: 10.7498/aps.64.050301
    [4] 徐天鸿, 姚辰, 万文坚, 朱永浩, 曹俊诚. 锥形太赫兹量子级联激光器输出功率与光束特性研究.  , 2015, 64(22): 224212. doi: 10.7498/aps.64.224212
    [5] 张会云, 刘蒙, 张玉萍, 何志红, 申端龙, 吴志心, 尹贻恒, 李德华. 基于振动弛豫理论提高光抽运太赫兹激光器输出功率的研究.  , 2014, 63(1): 010702. doi: 10.7498/aps.63.010702
    [6] 范洪义, 楼森岳, 潘孝胤, 笪诚. 量子力学混合态表象.  , 2014, 63(19): 190302. doi: 10.7498/aps.63.190302
    [7] 郑世燕. 以广义Redlich-Kwong气体为工质的不可逆回热式斯特林热机循环输出功率和效率.  , 2014, 63(17): 170508. doi: 10.7498/aps.63.170508
    [8] 范洪义, 楼森岳, 潘孝胤, 笪诚. 涉及Hermite多项式的二项式定理和Laguerre多项式的负二项式定理.  , 2013, 62(24): 240301. doi: 10.7498/aps.62.240301
    [9] 赵建涛, 冯国英, 杨火木, 唐淳, 陈念江, 周寿桓. 薄片激光器热效应及其对输出功率的影响.  , 2012, 61(8): 084208. doi: 10.7498/aps.61.084208
    [10] 徐永锋, 李明, 王六玲, 林文贤, 张兴华, 项明, 王云峰, 魏生贤. 聚光光强对光伏电池阵列输出性能的影响.  , 2009, 58(11): 8067-8076. doi: 10.7498/aps.58.8067
    [11] 刘全慧. 曲面上的动量和动能算符.  , 2008, 57(2): 674-677. doi: 10.7498/aps.57.674
    [12] 王智勇, 熊彩东. 量子力学中的时间.  , 2007, 56(6): 3070-3075. doi: 10.7498/aps.56.3070
    [13] 武丁二, 周 睿, 张晓华, 丁 欣, 姚建铨, 颜彩繁, 张光寅. LD端抽运平直腔Nd:YVO4固态激光器的输出功率特性研究.  , 2006, 55(3): 1196-1200. doi: 10.7498/aps.55.1196
    [14] 胡昆明. 关于等价电子组态波函数与Young盘间变换性质的讨论.  , 2005, 54(10): 4524-4525. doi: 10.7498/aps.54.4524
    [15] 张潮波, 宋峰, 孟凡臻, 丁欣, 张光寅, 商美茹. 利用输出功率测量激光二极管端面抽运的固体激光器热透镜焦距.  , 2002, 51(7): 1517-1520. doi: 10.7498/aps.51.1517
    [16] 贾艳伟, 刘全慧, 彭解华, 王鑫, 沈抗存. Heisenberg对应原理下氢原子1/r矩阵元的量子-经典对应.  , 2002, 51(2): 201-204. doi: 10.7498/aps.51.201
    [17] 方卯发, 刘翔. 双光子Jaynes-Cummings模型中量子力学通道与量子互熵.  , 2000, 49(3): 435-440. doi: 10.7498/aps.49.435
    [18] 凌瑞良. R(t)LC介观电路的量子力学处理.  , 1999, 48(12): 2343-2348. doi: 10.7498/aps.48.2343
    [19] 彭桓武. 阻尼谐振子的量子力学处理.  , 1980, 29(8): 1084-1089. doi: 10.7498/aps.29.1084
    [20] 吴中祥. 激光器输出功率的粗估公式.  , 1979, 28(3): 426-429. doi: 10.7498/aps.28.426
计量
  • 文章访问数:  6174
  • PDF下载量:  209
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-02-22
  • 修回日期:  2016-06-15
  • 刊出日期:  2016-08-05

/

返回文章
返回
Baidu
map