搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大深度接收时深海直达波区的复声强及声线到达角估计

孙梅 周士弘

引用本文:
Citation:

大深度接收时深海直达波区的复声强及声线到达角估计

孙梅, 周士弘

Complex acoustic intensity with deep receiver in the direct-arrival zone in deep water and sound-ray-arrival-angle estimation

Sun Mei, Zhou Shi-Hong
PDF
导出引用
  • 基于射线模型给出了质点水平振速、垂直振速及复声强的表达式. 结合深海直达波区的声线到达结构,分析了大深度接收时深海直达波区复声强的特点,理论分析与仿真结果表明,利用声场中不同组声线的复声强可以估计声线到达接收点的掠射角. 根据在2014年进行的一次深海实验中布放在3146 m深处的矢量水听器获取的实验信号,利用直达波和海面反射波的复声强估计了直达声线与海面反射声线到达接收矢量水听器处的掠射角,结果表明,估计的声线到达角与理论计算结果基本一致.
    In the direct-arrival zone in deep water, the sound ray arrival angle is one of the most important properties of the sound field. However, it is complicated to estimate the arrival angle only by using the information about the sound pressure. Vector sensors have significant advantages in direction-of-arrival estimation, and the acoustic energy flux detection is one of the most important estimation methods. In this paper, the properties of complex acoustic intensity in the direct-arrival zone in deep water are analyzed, and the arrival angles of sound rays are estimated with the complex acoustic intensity extracted from the experimental data. Firstly, the expressions of horizontal particle velocity, vertical particle velocity and complex sound intensity are provided based on the ray theory. It is shown that the amplitudes of the horizontal and vertical particle velocities and the components of the complex sound intensity are closely related to the sound ray arrival angle. The larger the sound ray arrival angle, the greater the vertical particle velocity and the vertical component of the complex sound intensity are, but the weaker the horizontal particle velocity and the horizontal component of the complex sound intensity are. Secondly, for the direct-arrival zone of the sound field generated by a shallow source in deep water, the properties of the complex sound intensity with deep receiver are analyzed based on the sound ray arrival structure. The theoretical and simulation results show that the arrival angles of the sound rays can be estimated with the complex sound intensities of pulses received by a deep receiver. The mean arrival angles of the direct ray and the surface-reflected ray can be estimated with the complex sound intensities of the pulses of the direct-arrival wave and the surface-reflected wave. The mean arrival angles of the bottom-reflected ray and the surface-reflected-bottom-reflected ray can be estimated with the complex sound intensities of the pulses of the bottom-reflected wave and the surface-reflected-bottom-reflected wave. The angle obtained with the complex sound intensity of the total field comprised of all sound rays is approximately equal to the mean arrival angles of the direct ray and the surfaced-reflected ray. Thirdly, the validity of the arrival angle estimation with the complex sound intensity is verified by the experimental data. During a deep water experiment conducted in 2014, a vector sensor was placed at a depth of 3146 m to receive the experimental signals. Within the range of 17 km, the vector sensor received the direct ray from the sound source towed at about 140 m. By using the pulses of the direct-arrival wave and the surface-reflected wave received by the vector sensor, the mean arrival angles of the direct rays and the surface-reflected rays are estimated. It is shown that the estimated arrival angles are consistent with the theoretical results.
      通信作者: 孙梅, sunmei@mail.ioa.ac.cn
    • 基金项目: 国家自然科学基金(批准号:11434012,41561144006)、声场声信息国家重点实验室开放课题(批准号:SKLA201602)和泰山学院科研启动基金(批准号:Y-01-2013009)资助的课题.
      Corresponding author: Sun Mei, sunmei@mail.ioa.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11434012, 41561144006), the Foundation of State Key Laboratory of Acoustics, China (Grant No. SKLA201602), and the Scientific Research Foundation of Taishan University, China (Grant No. Y-01-2013009).
    [1]

    Urick R J, Lund G R 1968 J. Acoust. Soc. Am. 43 723

    [2]

    Yang T C 1987 J. Acoust. Soc. Am. 82 1736

    [3]

    Tappert F D, Spiesberger J L, Wolfson M A 2002 J. Acoust. Soc. Am. 111 757

    [4]

    Li Q Q, Li Z L, Zhang R H 2011 Chin. Phys. Lett. 28 034303

    [5]

    Qin J X, Zhang R H, Luo W Y, Peng Z H, Liu J J, Wang D J 2014 Sci. China: Phys. Mech. Astron. 57 1031

    [6]

    Li W, Li Z L, Zhang R H, Qin J X, Li J, Nan M X 2015 Chin. Phys. Lett. 32 064302

    [7]

    Li J, Li Z L, Ren Y, Li W, Zhang R H 2015 Chin. Phys. Lett. 32 064303

    [8]

    Gaul R D, Knobles D P, Shooter J A, Wittenborn A F 2007 IEEE J. Oceanic Eng. 32 497

    [9]

    Urick R J 1983 Principles of Underwater Sound (3rd Ed.) (New York: McGraw-Hill)

    [10]

    Baggeroer A B, Scheer E K, Heaney K, Spain G D, Worcester P, Dzieciuch M 2010 J. Acoust. Soc. Am. 128 2385

    [11]

    Heaney K D, Campbell R C, Baggeroer A B, Spain G D, Worcester P, Dzieciuch M A 2010 J. Acoust. Soc. Am. 128 2386

    [12]

    Westwood E K 1992 J. Acoust. Soc. Am. 91 2777

    [13]

    McCargar R K, Zurk L M 2012 J. Acoust. Soc. Am. 132 2081

    [14]

    McCargar R, Zurk L M 2013 J. Acoust. Soc. Am. 133 EL320

    [15]

    Zurk L M, Boyle J K, Shibley J 2013 Proceedings of the Asilomar Conference on Signals, Systems and Computers New York, America, November 3-6, 2013 p2130

    [16]

    Kniffin G P, Boyle J K, Zurk L M, Siderius M 2016 J. Acoust. Soc. Am. 139 418

    [17]

    Duan R, Yang K D, Ma Y L, Lei B 2012 Chin. Phys. B 21 124301

    [18]

    Duan R, Yang K, Ma Y, Yang Q, Li H 2014 J. Acoust. Soc. Am. 136 EL159

    [19]

    Sun G Q, Yang D S, Zhang L Y, Shi S G 2003 Acta Acustica 28 66 (in Chinese) [孙贵青, 杨德森, 张揽月, 时胜国 2003 声学学报 28 66]

    [20]

    Liu B S, Lei J Y 2002 Principles of Underwater Acoustics (Harbin: Harbin Engineering University Press) pp101-116 (in Chinese) [刘伯胜, 雷家煜 2002 水声学原理 (哈尔滨: 哈尔滨工程大学出版社) 第101-116页]

    [21]

    Peng H S 2007 Ph. D. Dissertation (Beijing: Graduate University, Chinese Academy of Sciences) (in Chinese) [彭汉书 2007 博士学位论文 (北京: 中国科学院研究生院)]

    [22]

    Yu Y, Hui J Y, Zhao A B, Sun G C, Teng C 2008 Acta Phys. Sin. 57 5742 (in Chinese) [余赟, 惠俊英, 赵安邦, 孙国仓, 滕超 2008 57 5742]

  • [1]

    Urick R J, Lund G R 1968 J. Acoust. Soc. Am. 43 723

    [2]

    Yang T C 1987 J. Acoust. Soc. Am. 82 1736

    [3]

    Tappert F D, Spiesberger J L, Wolfson M A 2002 J. Acoust. Soc. Am. 111 757

    [4]

    Li Q Q, Li Z L, Zhang R H 2011 Chin. Phys. Lett. 28 034303

    [5]

    Qin J X, Zhang R H, Luo W Y, Peng Z H, Liu J J, Wang D J 2014 Sci. China: Phys. Mech. Astron. 57 1031

    [6]

    Li W, Li Z L, Zhang R H, Qin J X, Li J, Nan M X 2015 Chin. Phys. Lett. 32 064302

    [7]

    Li J, Li Z L, Ren Y, Li W, Zhang R H 2015 Chin. Phys. Lett. 32 064303

    [8]

    Gaul R D, Knobles D P, Shooter J A, Wittenborn A F 2007 IEEE J. Oceanic Eng. 32 497

    [9]

    Urick R J 1983 Principles of Underwater Sound (3rd Ed.) (New York: McGraw-Hill)

    [10]

    Baggeroer A B, Scheer E K, Heaney K, Spain G D, Worcester P, Dzieciuch M 2010 J. Acoust. Soc. Am. 128 2385

    [11]

    Heaney K D, Campbell R C, Baggeroer A B, Spain G D, Worcester P, Dzieciuch M A 2010 J. Acoust. Soc. Am. 128 2386

    [12]

    Westwood E K 1992 J. Acoust. Soc. Am. 91 2777

    [13]

    McCargar R K, Zurk L M 2012 J. Acoust. Soc. Am. 132 2081

    [14]

    McCargar R, Zurk L M 2013 J. Acoust. Soc. Am. 133 EL320

    [15]

    Zurk L M, Boyle J K, Shibley J 2013 Proceedings of the Asilomar Conference on Signals, Systems and Computers New York, America, November 3-6, 2013 p2130

    [16]

    Kniffin G P, Boyle J K, Zurk L M, Siderius M 2016 J. Acoust. Soc. Am. 139 418

    [17]

    Duan R, Yang K D, Ma Y L, Lei B 2012 Chin. Phys. B 21 124301

    [18]

    Duan R, Yang K, Ma Y, Yang Q, Li H 2014 J. Acoust. Soc. Am. 136 EL159

    [19]

    Sun G Q, Yang D S, Zhang L Y, Shi S G 2003 Acta Acustica 28 66 (in Chinese) [孙贵青, 杨德森, 张揽月, 时胜国 2003 声学学报 28 66]

    [20]

    Liu B S, Lei J Y 2002 Principles of Underwater Acoustics (Harbin: Harbin Engineering University Press) pp101-116 (in Chinese) [刘伯胜, 雷家煜 2002 水声学原理 (哈尔滨: 哈尔滨工程大学出版社) 第101-116页]

    [21]

    Peng H S 2007 Ph. D. Dissertation (Beijing: Graduate University, Chinese Academy of Sciences) (in Chinese) [彭汉书 2007 博士学位论文 (北京: 中国科学院研究生院)]

    [22]

    Yu Y, Hui J Y, Zhao A B, Sun G C, Teng C 2008 Acta Phys. Sin. 57 5742 (in Chinese) [余赟, 惠俊英, 赵安邦, 孙国仓, 滕超 2008 57 5742]

  • [1] 黎章龙, 胡长青, 赵梅, 秦继兴, 李整林, 杨雪峰. 基于大掠射角海底反射特性的深海地声参数反演.  , 2022, 71(11): 114302. doi: 10.7498/aps.71.20211915
    [2] 韩志斌, 彭朝晖, 刘雄厚. 深海海底反射区声场角谱域分布结构分析及在声纳波束俯仰上的应用研究.  , 2020, (): 004300. doi: 10.7498/aps.69.20191652
    [3] 韩志斌, 彭朝晖, 刘雄厚. 深海海底反射区声场角谱域分布结构分析及在声纳波束俯仰上的应用.  , 2020, 69(11): 114301. doi: 10.7498/aps.69.20201652
    [4] 张鹏, 李整林, 吴立新, 张仁和, 秦继兴. 深海海底反射会聚区声传播特性.  , 2019, 68(1): 014301. doi: 10.7498/aps.68.20181761
    [5] 李整林, 董凡辰, 胡治国, 吴双林. 深海大深度声场垂直相关特性.  , 2019, 68(13): 134305. doi: 10.7498/aps.68.20190134
    [6] 王龙昊, 秦继兴, 傅德龙, 李整林, 刘建军, 翁晋宝. 深海大接收深度海底混响研究.  , 2019, 68(13): 134303. doi: 10.7498/aps.68.20181883
    [7] 黄翔东, 刘明卓, 杨琳, 刘琨, 刘铁根. 单次空时域并行欠采样下的频率和到达角联合估计.  , 2017, 66(18): 188401. doi: 10.7498/aps.66.188401
    [8] 孙梅, 周士弘, 李整林. 基于矢量水听器的深海直达波区域声传播特性及其应用.  , 2016, 65(9): 094302. doi: 10.7498/aps.65.094302
    [9] 巴斌, 刘国春, 李韬, 林禹丞, 王瑜. 基于哈达玛积扩展子空间的到达时间和波达方向联合估计.  , 2015, 64(7): 078403. doi: 10.7498/aps.64.078403
    [10] 王丛屹, 徐成, 伍瑞新. 用最小结构单元频率选择表面实现大入射角宽频带的透波材料.  , 2014, 63(13): 137803. doi: 10.7498/aps.63.137803
    [11] 余海军, 钟国宝, 马建国, 任刚. 基于纠缠态表象的复脊波变换理论.  , 2013, 62(17): 174205. doi: 10.7498/aps.62.174205
    [12] 孙杰, 张晓娟, 方广有. 近地面三阵子天线估计电磁波到达角和极化参数.  , 2013, 62(19): 198402. doi: 10.7498/aps.62.198402
    [13] 刘金华, 佘堃. 基于双树复小波与波原子的图像扩散滤波.  , 2011, 60(12): 124203. doi: 10.7498/aps.60.124203
    [14] 余 赟, 惠俊英, 赵安邦, 孙国仓, 滕 超. Pekeris波导中简正波的复声强及其应用.  , 2008, 57(9): 5742-5748. doi: 10.7498/aps.57.5742
    [15] 唐孟希, 陈嘉言. 可调谐的低频连续引力波接收天线的研究.  , 1982, 31(10): 1300-1307. doi: 10.7498/aps.31.1300
    [16] 吴存恺, 范俊颖, 王志英. 有机染料溶液中简并的四波混频和位相复共轭研究.  , 1981, 30(2): 189-198. doi: 10.7498/aps.30.189
    [17] 吴存恺, 崔援朝, 王志英. 在有机染料溶液中简并的四波混频作用和位相复共轭.  , 1980, 29(7): 937-939. doi: 10.7498/aps.29.937
    [18] 吴存恺, 范俊颖, 王志英. 叶绿素中用简并的四波混频产生位相复共轭后向反射波.  , 1980, 29(3): 305-310. doi: 10.7498/aps.29.305
    [19] 唐应吾. 负声速梯度浅海中的平均声强.  , 1977, 26(3): 225-231. doi: 10.7498/aps.26.225
    [20] 曹昌祺. 带区近似中的π-π高能散射行为和复l平面的奇异性.  , 1964, 20(7): 596-606. doi: 10.7498/aps.20.596
计量
  • 文章访问数:  6462
  • PDF下载量:  330
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-16
  • 修回日期:  2016-06-13
  • 刊出日期:  2016-08-05

/

返回文章
返回
Baidu
map