-
研究强磁场对AZ31镁合金塑变能力和微观组织的作用, 在3 T脉冲强磁场条件下对合金进行磁场耦合应力时的拉伸实验. 采用电子背散射衍射、X射线衍射和透射电镜分析等方法研究材料的微观组织. 结果表明: 与0 T拉伸试样相比, 3 T拉伸试样抗拉强度和延伸率分别提高了2.2%和28.7%, 说明将强磁场耦合作用于材料塑性变形过程时, 能在不降低材料强度的同时提高镁合金的塑性变形能力, 有助于同步改善材料强韧性. 磁场作用机理主要表现为磁致塑性效应, 计算表明主要合金相 (Mg17Al12)为顺磁性, 有助于发挥磁场作用效果. 磁场提高了位错运动灵活性并促使位错增殖, 晶界处位错堆积和应力集中促进了再结晶形成, 晶粒发生细化, 发挥细晶强韧化效果; 同时磁场诱发塑性变形时的晶粒转动, 新生成非基面取向的晶粒弱化了镁合金(0001)基面织构, 该组织特征有助于提高材料的塑变能力.As an h.c.p crystal structure with only a few limited slipping planes, the AZ31 magnesium alloy exhibits a bad plasticity in the presence of external stress. Due to its low density, advanced damping capacity and high ratio strength and rigidity, the magnesium alloy has gradually become the focused and potential structural and functional metallic material in the diverse fields of aerospace, aviation and vehicle transportation, electronic products, etc. Therefore, it is of great importance to improve the process ability of conventional magnetism alloy as AZ31. In the past decades many approaches have been proposed in order to improve the plastic deformation capability. Among these, the diverse physical fields are regarded as the effective methods to improve the comprehensive mechanical properties of metallic materials due to their peculiar heat, force and quantum effects together with the advantageous characteristics of low pollution and high efficiency. In the paper, on the basis of previous researches, a high pulsed magnetic field is introduced into the tensile test to study the influences of magnetic field on the plasticity and microstructure of AZ31 magnesium alloy in order to explore a novel way to enhance the plastic deformation capability of alloy. As for the current experiment, the tensile test of AZ31 magnesium alloy is carried out under the coupling action of high pulsed magnetic field and external stress. The test results are compared with those processed without magnetic field. Several advanced detection methods are utilized to investigate the microstructure including the electron back scattered diffraction, X-ray diffraction and transmission electron microscopy, etc. Besides, the first principle is utilized to calculate the magnetic properties of main precipitates (Mg17Al12).The experimental results show that the tensile strength and elongation of the 3 T sample are increased by 2.2% and 28.7% in comparison to those of the 0 T sample. It highlights that when the high pulsed magnetic field is introduced into the plastic deformation process, the plasticity of the magnesium alloy can be improved without reducing the tensile strength of the material. The action mechanism of magnetic field is analyzed in detail and attributed to the magnetoplasticity effect. The calculation results on the basis of first principle show that the (Mg17Al12) phase is paramagnetic, which is helpful for performing the effect of magnetic field. The magnetic field enhances the flexibility of the dislocation movement and facilitates the proliferation of the dislocation. The dislocation and stress concentrating at the grain boundaries accelerate the formation of recrystallization, which is of great importance to the sub-grain generation and grain refinement that is beneficial to exhibiting the fine grain strengthening and enhancing the strength and toughness of alloy. Meanwhile, during the peculiar tensile process, the magnetic field induces the grain rotation. The newborn fine grains along the non-basal face weaken the (0001) basal texture of magnesium alloy. The characteristic of the texture structure is helpful for improving the plastic deformation capacity of AZ31 alloy. The plastic deformation under high magnetic field is regarded as an advanced way to improve the plasticities of similar nonmagnetic metallic materials such as aluminum, titanium and copper alloys and their composites.
-
Keywords:
- high magnetic field /
- AZ31 magnesium alloy /
- texture /
- mechanical properties
[1] Chen Z H 2005 Wrought Magnesium Alloys (Beijing:Chemical Industry Press) p4 (in Chinese) [陈振华 2005 变形镁合金 (北京:化学工业出版社) 第4页]
[2] Prasad Y V R K, Rao K P 2006 Mat. Sci. Eng. A 432 170
[3] Prez-Prado M T, Valle J A D, Contreras J M 2004 Scr. Mater. 50 661
[4] Wang H M, Li G R, Zhao Y T, Chen G 2010 Mat. Sci. Eng. A 527 2881
[5] Zhong H, Ren Z M, Li C J 2015 Acta Metallurgica Sinica 4 0 (in Chinese) [钟华, 任忠鸣, 李传军 2015 金属学报 4 0]
[6] Zhou M Q, Huang C Q, Xia W J 2006 Foundry 55 890 (in Chinese) [邹敏强, 黄长清, 夏伟军 2006 铸造 55 890]
[7] Bao W P, Xu G X, Zhen J W 2003 Journal of Materials and Metallurgy 2 216 (in Chinese) [包卫平, 许光明, 郑佳伟 2003 材料与冶金学报 2 216]
[8] Zhang B W, Ren Z M, Wang H 2004 Acta Metallurgica Sinica 40 604 (in Chinese) [张邦文, 任忠鸣, 王晖 2004 金属学报 40 604]
[9] Wang H M, Li P S, Zheng R 2015 Acta Phys. Sin. 64 087104 (in Chinese) [王宏明, 李沛思, 郑瑞 2015 64 087104]
[10] Molotskii M I, Fleurov V 2000 J. Phys. Chem. B 104 3812
[11] Golovin Y 2004 Phys. Solid State 46 789
[12] Molotskii M I 2000 Mat. Sci. Eng. A 287 248
[13] Kohn W, Sham L J 1965 Phys. Rev. A 140 1133
[14] Wang H M, Zheng R, Li G R 2015 Chinese Journal of Inorganic Chemistry 31 2143 (in Chinese) [王宏明, 郑瑞, 李桂荣 2015 无机化学学报 31 2143]
[15] Xiao X L, Luo C P, Nie J F 2001 Acta Metallurgica Sinica 1 1 (in Chinese) [肖晓玲, 罗承萍, 聂建峰 2001 金属学报 1 1]
[16] Lei X L, Zhu H J, Ge G X 2008 Acta Phys. Sin. 57 5491 (in Chinese) [雷雪玲, 祝恒江, 葛桂贤 2008 57 5491]
[17] Jia R X, Zhang Y M, Zhang Y M, Guo H 2010 Spectroscopy and Spectral Analysis 30 1995 (in Chinese) [贾仁需, 张玉明, 张义门, 郭辉 2010 光谱学与光谱分析 30 1995]
[18] Li P M, Wen X Z, Zhi Q L, Xi B W, Li J X, Li J, Tian F Z 2014 Mat. Sci. Eng. A 609 16
[19] Mao W M 2008 Structure and Properties of Metallic Materials (Beijing: Tinghua Press) p94 (in Chinese) [毛卫民 2008 金属材料结构与性能(北京:清华大学出版社) 第94页]
[20] Ni S, Wang Y B, Liao X Z 2012 Acta Mater. 60 3181
[21] Schouwenaars R, Seefeldt M, Houtte P V 2010 Acta Mater. 58 4344
[22] Liu P, Chen Z J 2011 Journal of Hefei University of Technology (Natural Science Edition) 34 341 (in Chinese) [刘萍, 陈忠家 2011 合肥工业大学学报 (自然科学版) 34 341]
[23] Chui Z Q, Tan Y C 2011 Metallography and Heat Treatment (Beijing: China Machine Press) p197 (in Chinese) [崔忠圻, 覃耀春 2011 金属学与热处理(北京:机械工业出版社) 第197页]
[24] Wu S, Zhao H Y, Lu A L, Fang H Z 2002 Transactions of the China Welding Institution 23 9 (in Chinese) [吴甦, 赵海燕, 鹿安理, 方慧珍 2002 焊接学报 23 9]
[25] Wu S, Zhao H Y, Lu A L, Fang H Z, Tang F 2002 Journal of Tsinghua University (Natural science edition) 42 147 (in Chinese) [吴甦, 赵海燕, 鹿安理, 方慧珍, 唐非 2002 清华大学学报 42 147]
[26] Guan L 2010 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese) [官磊 2010 博士学位论文 (北京: 清华大学)]
[27] Chen Y Q, Chen Z H, Xia W J 2005 Transactions of Nonferrous Metals Society of China 15 1369 (in Chinese) [程永奇, 陈振华, 夏伟军 2005 中国有色金属学报 15 1369]
[28] Guo Q, Yan H G, Chen Z H 2007 Acta Metallurgica Sinica 43 619 (in Chinese) [郭强, 严红革, 陈振华 2007 金属学报 43 619]
[29] Mukai T, Yamanoi M, Watanabe H 2001 Scr. Mater. 45 89
[30] Li Z F 2008 Ph. D. Dissertation (Shanghai: Shanghai Jiaotong University) (in Chinese) [励志峰 2008 博士学位论文 (上海: 上海交通大学)]
-
[1] Chen Z H 2005 Wrought Magnesium Alloys (Beijing:Chemical Industry Press) p4 (in Chinese) [陈振华 2005 变形镁合金 (北京:化学工业出版社) 第4页]
[2] Prasad Y V R K, Rao K P 2006 Mat. Sci. Eng. A 432 170
[3] Prez-Prado M T, Valle J A D, Contreras J M 2004 Scr. Mater. 50 661
[4] Wang H M, Li G R, Zhao Y T, Chen G 2010 Mat. Sci. Eng. A 527 2881
[5] Zhong H, Ren Z M, Li C J 2015 Acta Metallurgica Sinica 4 0 (in Chinese) [钟华, 任忠鸣, 李传军 2015 金属学报 4 0]
[6] Zhou M Q, Huang C Q, Xia W J 2006 Foundry 55 890 (in Chinese) [邹敏强, 黄长清, 夏伟军 2006 铸造 55 890]
[7] Bao W P, Xu G X, Zhen J W 2003 Journal of Materials and Metallurgy 2 216 (in Chinese) [包卫平, 许光明, 郑佳伟 2003 材料与冶金学报 2 216]
[8] Zhang B W, Ren Z M, Wang H 2004 Acta Metallurgica Sinica 40 604 (in Chinese) [张邦文, 任忠鸣, 王晖 2004 金属学报 40 604]
[9] Wang H M, Li P S, Zheng R 2015 Acta Phys. Sin. 64 087104 (in Chinese) [王宏明, 李沛思, 郑瑞 2015 64 087104]
[10] Molotskii M I, Fleurov V 2000 J. Phys. Chem. B 104 3812
[11] Golovin Y 2004 Phys. Solid State 46 789
[12] Molotskii M I 2000 Mat. Sci. Eng. A 287 248
[13] Kohn W, Sham L J 1965 Phys. Rev. A 140 1133
[14] Wang H M, Zheng R, Li G R 2015 Chinese Journal of Inorganic Chemistry 31 2143 (in Chinese) [王宏明, 郑瑞, 李桂荣 2015 无机化学学报 31 2143]
[15] Xiao X L, Luo C P, Nie J F 2001 Acta Metallurgica Sinica 1 1 (in Chinese) [肖晓玲, 罗承萍, 聂建峰 2001 金属学报 1 1]
[16] Lei X L, Zhu H J, Ge G X 2008 Acta Phys. Sin. 57 5491 (in Chinese) [雷雪玲, 祝恒江, 葛桂贤 2008 57 5491]
[17] Jia R X, Zhang Y M, Zhang Y M, Guo H 2010 Spectroscopy and Spectral Analysis 30 1995 (in Chinese) [贾仁需, 张玉明, 张义门, 郭辉 2010 光谱学与光谱分析 30 1995]
[18] Li P M, Wen X Z, Zhi Q L, Xi B W, Li J X, Li J, Tian F Z 2014 Mat. Sci. Eng. A 609 16
[19] Mao W M 2008 Structure and Properties of Metallic Materials (Beijing: Tinghua Press) p94 (in Chinese) [毛卫民 2008 金属材料结构与性能(北京:清华大学出版社) 第94页]
[20] Ni S, Wang Y B, Liao X Z 2012 Acta Mater. 60 3181
[21] Schouwenaars R, Seefeldt M, Houtte P V 2010 Acta Mater. 58 4344
[22] Liu P, Chen Z J 2011 Journal of Hefei University of Technology (Natural Science Edition) 34 341 (in Chinese) [刘萍, 陈忠家 2011 合肥工业大学学报 (自然科学版) 34 341]
[23] Chui Z Q, Tan Y C 2011 Metallography and Heat Treatment (Beijing: China Machine Press) p197 (in Chinese) [崔忠圻, 覃耀春 2011 金属学与热处理(北京:机械工业出版社) 第197页]
[24] Wu S, Zhao H Y, Lu A L, Fang H Z 2002 Transactions of the China Welding Institution 23 9 (in Chinese) [吴甦, 赵海燕, 鹿安理, 方慧珍 2002 焊接学报 23 9]
[25] Wu S, Zhao H Y, Lu A L, Fang H Z, Tang F 2002 Journal of Tsinghua University (Natural science edition) 42 147 (in Chinese) [吴甦, 赵海燕, 鹿安理, 方慧珍, 唐非 2002 清华大学学报 42 147]
[26] Guan L 2010 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese) [官磊 2010 博士学位论文 (北京: 清华大学)]
[27] Chen Y Q, Chen Z H, Xia W J 2005 Transactions of Nonferrous Metals Society of China 15 1369 (in Chinese) [程永奇, 陈振华, 夏伟军 2005 中国有色金属学报 15 1369]
[28] Guo Q, Yan H G, Chen Z H 2007 Acta Metallurgica Sinica 43 619 (in Chinese) [郭强, 严红革, 陈振华 2007 金属学报 43 619]
[29] Mukai T, Yamanoi M, Watanabe H 2001 Scr. Mater. 45 89
[30] Li Z F 2008 Ph. D. Dissertation (Shanghai: Shanghai Jiaotong University) (in Chinese) [励志峰 2008 博士学位论文 (上海: 上海交通大学)]
计量
- 文章访问数: 6179
- PDF下载量: 239
- 被引次数: 0