-
Sum rules for the dynamic structure factors are powerful tools to explore the collective behaviors in many-body systems at zero temperature as well as at finite temperatures. The recent remarkable realization of synthetic spin-orbit (SO) coupling in quantum gases is opening up new perspective to study the intriguing SO effects with ultracold atoms. So far, a specific type of SO coupling, which is generated by a pair of Raman laser beams, has been experimentally achieved in Bose-Einstein condensates of 87Rb and degenerate Fermi gases of 40K and 6Li. In the presence of SO coupling, the dynamic structure factors for the density fluctuation and spin fluctuation satisfy different sum rules. In particular, in the two-component quantum gases with inter-species Raman coupling, the f-sum rule for the spin fluctuation has an additional term proportional to the transverse spin polarization. Due to the coupling between the momentum and spin, the first moment of the dynamic structure factor does not necessarily possess the inversion symmetry, which is in strong contrast to the conventional system without SO coupling. Such an asymmetric behavior could be observed in both Fermi gases and Bose gases with Raman coupling. As a demonstration, we focus on the uniform case at zero temperature in this work. For the non-interacting Fermi gases, the asymmetric first moment appears only when the Raman detuning is finite. The asymmetric amplitude is quite limited, and it vanishes at both zero detuning and infinite detuning. For the weakly interacting Bose gases, the first moment is asymmetric in momentum space even at zero detuning, when the ground state spontaneously breaks the Z2 symmetry in the plane-wave condensation phase. Using the Bogoliubov method, the dynamic structure factor and its first moment are explicitly calculated for various interaction parameters. We find that the asymmetric behavior in the spin channel could be much more significant than in the density channel, and the asymmetric amplitude is enhanced as the interaction strength increases. Experimentally, the dynamic structure factors can be directly measured through the two photon Bragg scattering. Numeric simulations show that to observe the deviation of inversion symmetry in the first moment, the resolution of the Bragg spectroscopy should reach a required value. For the typical parameters of the rubidium atomic gas, the required resolution is about 10-2Er with Er being the recoil energy. Our predictions can be tested in the future experiment.
-
Keywords:
- spin-orbit coupling /
- dynamic structure factor /
- sum rule /
- Fermi gas /
- Bose gas
[1] Pitaevskii L P, Stringari S 2003 Bose-Einstein Condensation (New York: Oxford University Press) pp 87-96
[2] Stamper-Kurn D M, Chikkatur A P, Grlitz A, Inouye S, Gupta S, Pritchard D E, Ketterle W 1999 Phys. Rev. Lett. 83 2876
[3] Hoinka S, Lingham M, Delehaye M, Vale C J 2012 Phys. Rev. Lett. 109 050403
[4] Goldman N, Juzelinas G, hberg P, Spielman I B 2014 Rep. Prog. Phys. 77 126401
[5] Zhai H 2015 Rep. Prog. Phys. 78 026001
[6] Lin Y J, Jimnez-Garca K, Spielman I B 2011 Nature 471 83
[7] Wang P, Yu Z Q, Fu Z, Miao J, Huang L, Chai S, Zhai H, Zhang J 2012 Phys. Rev. Lett. 109 095301
[8] Cheuk L W, Sommer A T, Hadzibabic Z, Yefsah T, Bakr W S, Zwierlein M W 2012 Phys. Rev. Lett. 109 095302
[9] Ji S C, Zhang L, Xu X T, Wu Z, Deng Y, Chen S, Pan J W 2015 Phys. Rev. Lett. 114 105301
[10] Martone G I, Li Y, Pitaevskii L P, Stringari S 2012 Phys. Rev. A 86 063621
[11] Yu Z Q 2014 Phys. Rev. A 90 053608
[12] Zheng W, Yu Z Q, Cui X, Zhai H 2013 J. Phys. B: At. Mol. Opt. Phys. 46 134007
[13] Li Y, Pitaevskii L P, Stringari S 2012 Phys. Rev. Lett. 108 225301
-
[1] Pitaevskii L P, Stringari S 2003 Bose-Einstein Condensation (New York: Oxford University Press) pp 87-96
[2] Stamper-Kurn D M, Chikkatur A P, Grlitz A, Inouye S, Gupta S, Pritchard D E, Ketterle W 1999 Phys. Rev. Lett. 83 2876
[3] Hoinka S, Lingham M, Delehaye M, Vale C J 2012 Phys. Rev. Lett. 109 050403
[4] Goldman N, Juzelinas G, hberg P, Spielman I B 2014 Rep. Prog. Phys. 77 126401
[5] Zhai H 2015 Rep. Prog. Phys. 78 026001
[6] Lin Y J, Jimnez-Garca K, Spielman I B 2011 Nature 471 83
[7] Wang P, Yu Z Q, Fu Z, Miao J, Huang L, Chai S, Zhai H, Zhang J 2012 Phys. Rev. Lett. 109 095301
[8] Cheuk L W, Sommer A T, Hadzibabic Z, Yefsah T, Bakr W S, Zwierlein M W 2012 Phys. Rev. Lett. 109 095302
[9] Ji S C, Zhang L, Xu X T, Wu Z, Deng Y, Chen S, Pan J W 2015 Phys. Rev. Lett. 114 105301
[10] Martone G I, Li Y, Pitaevskii L P, Stringari S 2012 Phys. Rev. A 86 063621
[11] Yu Z Q 2014 Phys. Rev. A 90 053608
[12] Zheng W, Yu Z Q, Cui X, Zhai H 2013 J. Phys. B: At. Mol. Opt. Phys. 46 134007
[13] Li Y, Pitaevskii L P, Stringari S 2012 Phys. Rev. Lett. 108 225301
计量
- 文章访问数: 7468
- PDF下载量: 416
- 被引次数: 0