搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于分层的量子分组传输方案及性能分析

王林飞 聂敏 杨光 张美玲 裴昌幸

引用本文:
Citation:

一种基于分层的量子分组传输方案及性能分析

王林飞, 聂敏, 杨光, 张美玲, 裴昌幸

A scheme of quantum packet transmission and its performance analysis based on hierarchical

Wang Lin-Fei, Nie Min, Yang Guang, Zhang Mei-Ling, Pei Chang-Xing
PDF
导出引用
  • 大规模量子通信网络中, 采用量子分组传输技术能有效提升发送节点的吞吐量, 提高网络中链路的利用率, 增强通信的抗干扰性能. 然而量子分组的快速传输与路由器性能息息相关. 路由器性能瓶颈将严重影响网络的可扩展性和链路的传输效率. 本文提出一种量子通信网络分层结构, 并根据量子密集编码和量子隐形传态理论, 给出一种基于分层的量子分组信息传输方案, 实现端到端的量子信息传输. 该方案先将量子分组按照目的地址进行聚类, 再按聚类后的地址进行传输. 仿真结果表明, 基于分层的量子分组信息传输方案能够有效减少量子分组信息在量子通信网络中的传输时间, 并且所减少的时间与量子路由器性能与发送的量子分组数量有关. 因此, 本文提出的量子分组信息传输方案适用于大规模量子通信网络的构建.
    By using quantum packet transmission technology in large scale quantum communication networks, the throughput of transmission node, network link utilization, and the anti-interference performance of communication can be effectively improved. However, the fast transmission of quantum packets is closely related to the performance of router. The bottleneck of the router performance will seriously affect the scalability of the network and the transmission efficiency of the link. In order to reduce the number of quantum packet queues in nodes of the quantum communication network and to reduce the transmission delay of quantum packets, firstly, according to the classical computer communication network structure, in our paper, we divide the quantum communication network into quantum local area network, quantum metropolitan area network and quantum wide area network. Secondly, the quantum packet format and the quantum cluster format compatible with the packet format in the computer network are determined. Then, a quantum information packet transmission scheme based on the hierarchy is proposed, to realize the end-to-end transmission of quantum information. In our scheme, the quantum packets are divided into quantum packet header information and quantum data information. Quantum dense coding mode is used to transmit the quantum packet header information, while the quantum data information uses quantum teleportation to transmit. First, the quantum packets are sent to the router of the quantum local area network at source address, then the quantum LAN router relay the packets to the quantum metropolitan area network router, the router here makes the quantum packets into quantum cluster according to destination address. Quantum clusters are transmitted in the quantum metropolitan area network and quantum wide area network, ending in the quantum metropolitan area network routing. After the quantum clusters are decomposed, they are sent to the destination address through the local area network router of each quantum packet.We analyze the number of quantum entanglement pairs and the total transmission time in our scheme. The results show that the more the routers by the quantum packet and the quantum cluster are, the more the number of quantum entanglement pairs required by the transmission of a certain quantum packet is. When the number of routers is certain, the number of entanglement pairs required in the transmission process of quantum packet and quantum cluster depends on the number of quantum packets. Finally, the theoretical analysis and calculation are carried out by Matlab simulation, the results show that hierarchical quantum packet information transmission scheme can effectively reduce the transmission time of quantum packet information in the quantum communication network, and the reduced time is related to the quantum router performance and the number of quantum packets to send: the more the number of quantum packets to send, the longer the length of packet processing time needs is and the more obvious the advantage of our scheme is. Therefore, the proposed scheme in this paper is suitable for the construction of large scale quantum communication networks.
      通信作者: 王林飞, 304375220@qq.com
    • 基金项目: 国家自然科学基金(批准号: 61201194)、陕西省自然科学基础研究计划(批准号: 2014JQ8318)和陕西省国际科技合作与交流计划项目(批准号: 2015KW-013)资助的课题.
      Corresponding author: Wang Lin-Fei, 304375220@qq.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61201194), the Natural Science Research Foundation of Shaanxi Province, China (Grant No. 2014JQ8318) and the International Scientific and Technological Cooperation and Exchange Program in Shaanxi Province, China (Grant No. 2015KW-013).
    [1]

    Bennet C H, Brassard G, Crepeau C, Jozsa R, Peres A, Wooters W K 1993 Phys. Rev. Lett. 70 1895

    [2]

    Ekert A 1991 Phys. Rev Lett. 67 661

    [3]

    Bennett C H 1992 Phys. Rev. Lett. 68 3121

    [4]

    Chan H C B, Leung V C M 2000 Conference on Electrical and Computer Engineering Halifax, Canada, Mar 7-10, 2000 p459

    [5]

    Ray Y W L, Henry C B C, Hui C, Tharam S D, Victor O K L, Victor C M L 2008 J. Commun. Netw-s. Kor. 10 316

    [6]

    Yurke B, Denker J S 1984 Phys. Lett. A 29 1419

    [7]

    Cirac J I, Zoller P, Kimble H J, Mabuchi H 1997 Phys. Rev. Lett. 78 3221

    [8]

    Chip E 2002 New J. Phys. 4 46

    [9]

    Long G L, Liu X S 2002 Phys. Rev. A 65 032302

    [10]

    Deng F G, Long G L, Liu X S 2003 Phys. Rev. A 68 042317

    [11]

    Deng F G, Long G L 2004 Phys. Rev. A 69 052319

    [12]

    Wang J, Chen H Q, Zhang Q, Tang C J 2007 Acta Phys. Sin. 56 673 (in Chinese) [王剑, 陈皇卿, 张权, 唐朝京 2007 56 673]

    [13]

    Wang T Y, Qin S J, Wen Q Y, Zhu F C 2008 Acta Phys. Sin. 57 7452 (in Chinese) [王天银, 秦素娟, 温巧燕, 朱甫臣 2008 57 7452]

    [14]

    Long G L, Wang C, Li Y S, Deng F G 2011 Sci. China: Ser. G 41 332 (in Chinese) [龙桂鲁, 王川, 李岩松, 邓富国 2011 中国科学:物理学 力学 天文学 41 332]

    [15]

    Long G L, Qin G Q 2014 Physics and Engineering 24 3 (in Chinese) [龙桂鲁, 秦国卿 2014 物理与工程 2014 24 3

    [16]

    Chen W, Han Z F, Zhang T, Wen H, Yin Z Q, Xu F X, Wu Q L, Liu Y, Zhang Y, Mo X F, Gui Y Z, Wei G, Guo G C 2009 IEEE Photonic. Tech. L. 21 575

    [17]

    Xu F X, Chen W, Wang S 2009 Chin. Sci. Bull. 54 2277 (in Chinese) [许方星, 陈巍, 王双 2009 科学通报 54 2277]

    [18]

    Zeng B Y 2009 M. S. Dissertation (Nanchang: Nanchang University ) (in Chinese) [曾宾阳 2009 硕士学位论文 (南昌: 南昌大学)]

    [19]

    Liu X H, Pei C X, Nie M 2014 J. Jinlin. Univ. Technol. Ed. 44 1177 (in Chinese) [刘晓慧, 裴昌幸, 聂敏 2014 吉林大学学报(工学版) 44 1177]

    [20]

    Wang J M 2014 M. S. Dissertation (Xian: Xian University of Electronic Science and Technology) (in Chinese) [王建民 2014 硕士学位论文 (西安: 西安电子科技大学)]

    [21]

    Chen P, Cai Y X, Cai X F, Shi L H, Yu X T 2015 Acta Phys. Sin. 64 040301 (in Chinese) [陈鹏, 蔡有勋, 蔡晓菲, 施丽慧, 余旭涛 2015 64 040301]

    [22]

    Ma H Y, Qin G Q, Fan X K, Chu P C 2015 Acta Phys. Sin. 64 160306 (in Chinese) [马鸿洋, 秦国卿, 范兴奎, 初鹏程 2015 64 160306]

    [23]

    Xie X R 2008 The Internet Network (Beijing: Publishing House of Electronics Industry) pp17-364 (in Chinese)[谢希仁 2008 计算机网络 (北京: 电子工业出版社) 第 17-364 页]

    [24]

    Schaet T, Barrett M D, Leibried D, Chiaverini J, Britton J, Itano W M, Jost J D, Langer C, WIneland D J 2004 Phys. Rev. Lett. 93 040505

  • [1]

    Bennet C H, Brassard G, Crepeau C, Jozsa R, Peres A, Wooters W K 1993 Phys. Rev. Lett. 70 1895

    [2]

    Ekert A 1991 Phys. Rev Lett. 67 661

    [3]

    Bennett C H 1992 Phys. Rev. Lett. 68 3121

    [4]

    Chan H C B, Leung V C M 2000 Conference on Electrical and Computer Engineering Halifax, Canada, Mar 7-10, 2000 p459

    [5]

    Ray Y W L, Henry C B C, Hui C, Tharam S D, Victor O K L, Victor C M L 2008 J. Commun. Netw-s. Kor. 10 316

    [6]

    Yurke B, Denker J S 1984 Phys. Lett. A 29 1419

    [7]

    Cirac J I, Zoller P, Kimble H J, Mabuchi H 1997 Phys. Rev. Lett. 78 3221

    [8]

    Chip E 2002 New J. Phys. 4 46

    [9]

    Long G L, Liu X S 2002 Phys. Rev. A 65 032302

    [10]

    Deng F G, Long G L, Liu X S 2003 Phys. Rev. A 68 042317

    [11]

    Deng F G, Long G L 2004 Phys. Rev. A 69 052319

    [12]

    Wang J, Chen H Q, Zhang Q, Tang C J 2007 Acta Phys. Sin. 56 673 (in Chinese) [王剑, 陈皇卿, 张权, 唐朝京 2007 56 673]

    [13]

    Wang T Y, Qin S J, Wen Q Y, Zhu F C 2008 Acta Phys. Sin. 57 7452 (in Chinese) [王天银, 秦素娟, 温巧燕, 朱甫臣 2008 57 7452]

    [14]

    Long G L, Wang C, Li Y S, Deng F G 2011 Sci. China: Ser. G 41 332 (in Chinese) [龙桂鲁, 王川, 李岩松, 邓富国 2011 中国科学:物理学 力学 天文学 41 332]

    [15]

    Long G L, Qin G Q 2014 Physics and Engineering 24 3 (in Chinese) [龙桂鲁, 秦国卿 2014 物理与工程 2014 24 3

    [16]

    Chen W, Han Z F, Zhang T, Wen H, Yin Z Q, Xu F X, Wu Q L, Liu Y, Zhang Y, Mo X F, Gui Y Z, Wei G, Guo G C 2009 IEEE Photonic. Tech. L. 21 575

    [17]

    Xu F X, Chen W, Wang S 2009 Chin. Sci. Bull. 54 2277 (in Chinese) [许方星, 陈巍, 王双 2009 科学通报 54 2277]

    [18]

    Zeng B Y 2009 M. S. Dissertation (Nanchang: Nanchang University ) (in Chinese) [曾宾阳 2009 硕士学位论文 (南昌: 南昌大学)]

    [19]

    Liu X H, Pei C X, Nie M 2014 J. Jinlin. Univ. Technol. Ed. 44 1177 (in Chinese) [刘晓慧, 裴昌幸, 聂敏 2014 吉林大学学报(工学版) 44 1177]

    [20]

    Wang J M 2014 M. S. Dissertation (Xian: Xian University of Electronic Science and Technology) (in Chinese) [王建民 2014 硕士学位论文 (西安: 西安电子科技大学)]

    [21]

    Chen P, Cai Y X, Cai X F, Shi L H, Yu X T 2015 Acta Phys. Sin. 64 040301 (in Chinese) [陈鹏, 蔡有勋, 蔡晓菲, 施丽慧, 余旭涛 2015 64 040301]

    [22]

    Ma H Y, Qin G Q, Fan X K, Chu P C 2015 Acta Phys. Sin. 64 160306 (in Chinese) [马鸿洋, 秦国卿, 范兴奎, 初鹏程 2015 64 160306]

    [23]

    Xie X R 2008 The Internet Network (Beijing: Publishing House of Electronics Industry) pp17-364 (in Chinese)[谢希仁 2008 计算机网络 (北京: 电子工业出版社) 第 17-364 页]

    [24]

    Schaet T, Barrett M D, Leibried D, Chiaverini J, Britton J, Itano W M, Jost J D, Langer C, WIneland D J 2004 Phys. Rev. Lett. 93 040505

  • [1] 陈以鹏, 刘靖阳, 朱佳莉, 方伟, 王琴. 机器学习在量子通信资源优化配置中的应用.  , 2022, 71(22): 220301. doi: 10.7498/aps.71.20220871
    [2] 文镇南, 易有根, 徐效文, 郭迎. 无噪线性放大的连续变量量子隐形传态.  , 2022, 71(13): 130307. doi: 10.7498/aps.71.20212341
    [3] 张乐, 袁训锋, 谭小东. 退相位环境下Werner态在石墨烯基量子通道中的隐形传输.  , 2022, 71(7): 070304. doi: 10.7498/aps.71.20211881
    [4] 武莹, 李锦芳, 刘金明. 基于部分测量增强量子隐形传态过程的量子Fisher信息.  , 2018, 67(14): 140304. doi: 10.7498/aps.67.20180330
    [5] 贾芳, 刘寸金, 胡银泉, 范洪义. 量子隐形传态保真度的新公式及应用.  , 2016, 65(22): 220302. doi: 10.7498/aps.65.220302
    [6] 李熙涵. 量子直接通信.  , 2015, 64(16): 160307. doi: 10.7498/aps.64.160307
    [7] 聂敏, 王林飞, 杨光, 张美玲, 裴昌幸. 基于分组交换的量子通信网络传输协议及性能分析.  , 2015, 64(21): 210303. doi: 10.7498/aps.64.210303
    [8] 刘世右, 郑凯敏, 贾芳, 胡利云, 谢芳森. 单-双模组合压缩热态的纠缠性质及在量子隐形传态中的应用.  , 2014, 63(14): 140302. doi: 10.7498/aps.63.140302
    [9] 张沛, 周小清, 李智伟. 基于量子隐形传态的无线通信网络身份认证方案.  , 2014, 63(13): 130301. doi: 10.7498/aps.63.130301
    [10] 乔盼盼, 艾合买提·阿不力孜, 蔡江涛, 路俊哲, 麦麦提依明·吐孙, 日比古·买买提明. 利用热平衡态超导电荷量子比特实现量子隐形传态.  , 2012, 61(24): 240303. doi: 10.7498/aps.61.240303
    [11] 周小清, 邬云文, 赵晗. 量子隐形传态网络的互联与路由策略.  , 2011, 60(4): 040304. doi: 10.7498/aps.60.040304.2
    [12] 潘长宁, 方见树, 彭小芳, 廖湘萍, 方卯发. 耗散系统中实现原子态量子隐形传态的保真度.  , 2011, 60(9): 090303. doi: 10.7498/aps.60.090303
    [13] 何锐, Bing He. 量子隐形传态的新方案.  , 2011, 60(6): 060302. doi: 10.7498/aps.60.060302
    [14] 周南润, 曾宾阳, 王立军, 龚黎华. 基于纠缠的选择自动重传量子同步通信协议.  , 2010, 59(4): 2193-2199. doi: 10.7498/aps.59.2193
    [15] 唐有良, 刘 翔, 张小伟, 唐筱芳. 用一个纠缠态实现多粒子纠缠态的量子隐形传送.  , 2008, 57(12): 7447-7451. doi: 10.7498/aps.57.7447
    [16] 周南润, 曾贵华, 龚黎华, 刘三秋. 基于纠缠的数据链路层量子通信协议.  , 2007, 56(9): 5066-5070. doi: 10.7498/aps.56.5066
    [17] 夏云杰, 王光辉, 杜少将. 双模最小关联混合态作为量子信道实现量子隐形传态的保真度.  , 2007, 56(8): 4331-4336. doi: 10.7498/aps.56.4331
    [18] 周小清, 邬云文. 利用三粒子纠缠态建立量子隐形传态网络的探讨.  , 2007, 56(4): 1881-1887. doi: 10.7498/aps.56.1881
    [19] 张 茜, 李福利, 李宏荣. 基于双模压缩信道的双模高斯态量子隐形传态.  , 2006, 55(5): 2275-2280. doi: 10.7498/aps.55.2275
    [20] 宋同强. 利用双模压缩真空态实现量子态的远程传输.  , 2004, 53(10): 3358-3362. doi: 10.7498/aps.53.3358
计量
  • 文章访问数:  5928
  • PDF下载量:  280
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-10
  • 修回日期:  2016-04-07
  • 刊出日期:  2016-07-05

/

返回文章
返回
Baidu
map