搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

TATB晶体声子谱及比热容的第一性原理研究

蒋文灿 陈华 张伟斌

引用本文:
Citation:

TATB晶体声子谱及比热容的第一性原理研究

蒋文灿, 陈华, 张伟斌

First-principles study of the phonon spectrum and heat capacity of TATB crystal

Jiang Wen-Can, Chen Hua, Zhang Wei-Bin
PDF
导出引用
  • 利用第一性原理并结合vdW-DF2范德瓦耳斯力校正研究了TATB(C6H6O6N6)晶体声子谱及比热容. 采用冷冻声子法计算了TATB晶体声子谱和声子态密度, 发现在2.3 THz附近TATB声子态密度最大, 证实了太赫兹光谱实验观察到的2.22 THz附近的强吸收峰. 基于声子态密度研究了振动模式对比热容的贡献, 分析结果表明, 常温下0-27.5 THz频段振动模式贡献了比热容的93.7%. 同时比较了升温过程中振动模式对比热容的贡献, 指出TATB热分解的引发键是C-NO2键断裂的可能性更大.
    The widely used energetic material 1, 3, 5-triamino-2, 4, 6-trinitrobenzene (TATB) is an extremely powerful explosive and known for its extraordinary insensitivity to external stimuli (i.e., shock, friction, impact). TATB crystal exhibits graphitic-like sheets with significant inter- and intra-molecular hydrogen bondings within each layer and weak van der Waals (vdW) interactions between layers. Although TATB has been extensively studied both theoretically and experimentally, a fully understanding of its unique detonation phenomenon at a microscopic level is still lacking. Before establishing the exact pathway through which the initial energy is transferred, a fundamental knowledge of both the lattice vibrations (phonons) and molecule internal vibrations must be gained at the first step. Recently, it has been demonstrated that density functional theory (DFT) is inadequate in treating conventional energetic materials, within which dispersion interactions appear to be major contributors to the binding forces. In the present work, phonon spectrum and specific heat of TATB crystal are calculated in the framework of DFT with vdW-DF2 correction, which has been validated in our previous studies of the equation of state, structure and vibration property of TATB crystal under pressures in a range of 0-8.5 GPa. Structure optimization is preformed at zero-pressure, followed by calculating the equation of state, crystal density and lattice energy. The computed results are found to fit well with the experimental and other theoretical values. Frozen phonon method is used to calculate the phonon spectrum and phonon density of states. We find that the phonon density of states reaches its maximum at a vibration frequency of 2.3 THz, which is in good agreement with the strong absorption peak at 2.22 THz observed by THz spectroscopy. The assignment of several Raman active vibrations of TATB above 7.5 THz is given, and a comparison with other published results is also made in this study. Furthermore, the contributions of different phonon vibration modes to the specific heat are derived from the phonon density of states. The number of doorway modes (i.e., the low frequency molecular vibrations that is critical to detonation initiation) of TATB in a range of 6.0-21.0 THz is estimated based on the phonon density of states. It is shown that the phonon modes in a range of 0-27.5 THz would contribute 93.7% of the total specific heat at room temperature. By combining a Mulliken population analysis of TATB with the relative contribution of phonon vibration modes to the specific heat at 300-600 K, we conclude that C-NO2 bond might be the trigger bond of TATB during thermolysis.
      通信作者: 张伟斌, weibinzhang@caep.cn
    • 基金项目: 中国工程物理研究院科学技术发展基金(批准号: 2013A0302013)资助的课题.
      Corresponding author: Zhang Wei-Bin, weibinzhang@caep.cn
    • Funds: Project supported by the Science and Technology Development Foundation of China Academy of Engineering Physics (Grant No. 2013A0302013).
    [1]

    Cady H H, Larson A C 1965 Acta Crystallogr. 18 485

    [2]

    Ji G F 2002 Ph. D. Dissertation (Nanjing: Nanjing University of Science and Technology) (in Chinese) [姬广富 2002 博士学位论文 (南京: 南京理工大学)]

    [3]

    Fedorov I A, Zhuravlev Y N 2014 Chem. Phys. 436 1

    [4]

    Liu H 2006 Ph. D. Dissertation (Shichuan: Sounthwest Jiaotong University) (in Chinese) [刘红 2006 博士学位论文 (四川: 西南交通大学)]

    [5]

    Ojeda O U, ağin T 2011 J. Phys. Chem. B 115 12085

    [6]

    Gorshkov M, Grebenkin K, Zherebtsov A, Zaikin V, Slobodenyukov V, Tkachev O 2007 Combust. Explo. Shock 43 78

    [7]

    Bourasseau E, Maillet J B, Desbiens N, Stoltz G 2011 J. Phys. Chem. A 115 10729

    [8]

    Xiao J J, Huang Y C, Hu Y J, Xiao H M 2005 Sci. China Ser. B Chem. 48 504

    [9]

    Budzevich M M, Landerville A C, Conroy M W, Lin Y, Oleynik I I, White C T 2010 J. Appl. Phys. 107 113524

    [10]

    Dove M T 1993 Introduction to Lattice Dynamics (Cambridge: Cambridge University Press) pp1-2

    [11]

    Burnham A K, Weese R K, Wemhoff A P, Maienschein J L 2007 J. Therm. Anal. Calorim. 89 407

    [12]

    Dlott D D 2011 Annu. Rev. Phys. Chem. 62 575

    [13]

    Tarver C 1997 J. Phys. Chem. A 101 4845

    [14]

    Dlott D D 2003 J. Theor. Comput. Chem. 13 125

    [15]

    Henson B F, Smilowitz L B 2010 Shock Wave Science and Technology Reference Library Berlin Heidelberg 2010 pp45-128

    [16]

    Kraczek B, Chung P W 2013 J. Chem. Phys. 138 074505

    [17]

    Coffey C, Toton E 1982 J. Chem. Phys. 76 949

    [18]

    Dlott D, Fayer M D 1990 J.Chem. Phys. 92 3798

    [19]

    Tokmakoff A, Fayer M, Dlott D D 1993 J. Phys. Chem. 97 1901

    [20]

    Kohn W, Sham L J 1965 Phys. Rev. 140 A1133

    [21]

    Hohenberg P, Kohn W 1964 Phys. Rev. 136 B864

    [22]

    Baroni S, Gironcoli S D, Corso A D, Giannozzi P 2001 Rev. Mod. Phys. 73 515

    [23]

    Li X X, Tao X M, Chen H M, Ouyang Y F, Du Y 2013 Chin. Phys. B 22 366

    [24]

    Feng S K, Li S M, Fu H Z 2014 Chin. Phys. B 23 420

    [25]

    Yu Y, Chen C L, Zhao G D, Zhao X L, Zhu X H 2014 Chin. Phys. Lett. 31 100

    [26]

    Zhang X J, Chen C L, Feng F L 2013 Chin. Phys. B 22 520

    [27]

    Pu C Y, Ye X T, Jiang H L, Zhang F W, Lu Z W, He J B, Zhou D W 2015 Chin. Phys. B 3 275

    [28]

    Velizhanin K A, Kilina S, Sewell T D, Piryatinski A 2008 J. Phys. Chem. B 112 13252

    [29]

    Wu Z, Kalia R K, Nakano A, Vashishta P 2011 J. Chem. Phys. 134 204509

    [30]

    Long Y, Chen J 2014 Philos. Mag. 94 2656

    [31]

    Cui H L, Ji G F, Chen X R, Zhu W H, Zhao F, Wen Y, Wei D Q 2009 J. Phys. Chem. A 114 1082

    [32]

    Sorescu D C, Rice B M 2010 J. Phys. Chem. C 114 6734

    [33]

    Lee K, Murray D, Kong L, Lundqvist B I, Langreth D C 2010 Phys. Rev. B 82 081101

    [34]

    Jiang W C, Chen H, Zhang W B 2016 Chin. J. Energ. Mater. (in Chinese) [蒋文灿, 陈华, 张伟斌 2016 含能材料] (in press)

    [35]

    Kresse G, Furthmller J 1996 Comput. Mater. Sci. 6 15

    [36]

    Togo A, Oba F, Tanaka I 2008 Phys. Rev. B 78 134106

    [37]

    Birch F 1947 Phys. Rev. 71 809

    [38]

    Olinger B W, Cady H H 1976 Conference: 6. Symposium on Detonation San Diego, California, August 24-27, 1976 p224

    [39]

    Stevens L L, Velisavljevic N, Hooks D E, Dattelbaum D M 2008 Propell. Explos. Pyrot. 33 286

    [40]

    Rosen J M, Dickinson C 1969 J. Chem. Eng. Data 14 120

    [41]

    Jin Z, Liu J, Wang L L, Cao F L, Sun H 2014 Acta Phys. -Chem. Sin. 30 654 (in Chinese) [金钊, 刘建, 王丽莉, 曹风雷, 孙淮 2014 物理化学学报 30 654]

    [42]

    Liu L, Liu Y, Zybin S V, Sun H, Goddard III W A 2011 J. Phys. Chem. A 115 11016

    [43]

    Valenzano L, Slough W J, Perger W 2012 Shock Compression of Condensed Matter-2011: Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter Chicago, IIIinois, June 26-July 1, 2011 pp1191-1194

    [44]

    Xu W T 1999 Group Theory and Its Applications in Solid State Physics (Beijing: Higher Education Press) pp218-221 (in Chinese) [徐婉棠 1999 群论及其在固体物理中的应用(北京: 高等教育出版社 第218-221页)]

    [45]

    Pravica M, Yulga B, Liu Z, Tschauner O 2007 Phys. Rev. B 76 64102

    [46]

    Mcgrane S, Shreve A 2003 J. Chem. Phys. 119 5834

    [47]

    Liu H, Zhao J, Ji G, Wei D, Gong Z 2006 Phys. Lett. A 358 63

    [48]

    Jia C Q, Song T, Liu X Y, Zhang Z W, Jiang G 2013 Chin. J. Energ. Mater. 21 434 (in Chinese) [贾传强, 宋涛, 刘晓亚, 张振伟, 蒋刚 2013 含能材料 21 434]

    [49]

    Hill J R, Dlott D D 1989 J. Chem. Phys. 89 830

    [50]

    Ye S, Tonokura K, Koshi M 2003 Combust. Flame 132 240

    [51]

    Ge S H, Cheng X L, Wu L S, Yang X D 2007 J. Mol. Struct. 809 55

    [52]

    Huang K, Han R Q 1966 Solid States Physics (Beijing: People's Education Press) pp79-82 (in Chinese) [黄昆, 韩汝琦 1966 固体物理学(北京: 人民教育出版社)第79-82页]

    [53]

    Xiao H M, Fan J F, Gu Z M, Dong H S 1998 Chem. Phys. 226 15

    [54]

    Wu Q, Chen H, Xiong G, Zhu W, Xiao H 2015 J. Phys. Chem. C 29 16500

  • [1]

    Cady H H, Larson A C 1965 Acta Crystallogr. 18 485

    [2]

    Ji G F 2002 Ph. D. Dissertation (Nanjing: Nanjing University of Science and Technology) (in Chinese) [姬广富 2002 博士学位论文 (南京: 南京理工大学)]

    [3]

    Fedorov I A, Zhuravlev Y N 2014 Chem. Phys. 436 1

    [4]

    Liu H 2006 Ph. D. Dissertation (Shichuan: Sounthwest Jiaotong University) (in Chinese) [刘红 2006 博士学位论文 (四川: 西南交通大学)]

    [5]

    Ojeda O U, ağin T 2011 J. Phys. Chem. B 115 12085

    [6]

    Gorshkov M, Grebenkin K, Zherebtsov A, Zaikin V, Slobodenyukov V, Tkachev O 2007 Combust. Explo. Shock 43 78

    [7]

    Bourasseau E, Maillet J B, Desbiens N, Stoltz G 2011 J. Phys. Chem. A 115 10729

    [8]

    Xiao J J, Huang Y C, Hu Y J, Xiao H M 2005 Sci. China Ser. B Chem. 48 504

    [9]

    Budzevich M M, Landerville A C, Conroy M W, Lin Y, Oleynik I I, White C T 2010 J. Appl. Phys. 107 113524

    [10]

    Dove M T 1993 Introduction to Lattice Dynamics (Cambridge: Cambridge University Press) pp1-2

    [11]

    Burnham A K, Weese R K, Wemhoff A P, Maienschein J L 2007 J. Therm. Anal. Calorim. 89 407

    [12]

    Dlott D D 2011 Annu. Rev. Phys. Chem. 62 575

    [13]

    Tarver C 1997 J. Phys. Chem. A 101 4845

    [14]

    Dlott D D 2003 J. Theor. Comput. Chem. 13 125

    [15]

    Henson B F, Smilowitz L B 2010 Shock Wave Science and Technology Reference Library Berlin Heidelberg 2010 pp45-128

    [16]

    Kraczek B, Chung P W 2013 J. Chem. Phys. 138 074505

    [17]

    Coffey C, Toton E 1982 J. Chem. Phys. 76 949

    [18]

    Dlott D, Fayer M D 1990 J.Chem. Phys. 92 3798

    [19]

    Tokmakoff A, Fayer M, Dlott D D 1993 J. Phys. Chem. 97 1901

    [20]

    Kohn W, Sham L J 1965 Phys. Rev. 140 A1133

    [21]

    Hohenberg P, Kohn W 1964 Phys. Rev. 136 B864

    [22]

    Baroni S, Gironcoli S D, Corso A D, Giannozzi P 2001 Rev. Mod. Phys. 73 515

    [23]

    Li X X, Tao X M, Chen H M, Ouyang Y F, Du Y 2013 Chin. Phys. B 22 366

    [24]

    Feng S K, Li S M, Fu H Z 2014 Chin. Phys. B 23 420

    [25]

    Yu Y, Chen C L, Zhao G D, Zhao X L, Zhu X H 2014 Chin. Phys. Lett. 31 100

    [26]

    Zhang X J, Chen C L, Feng F L 2013 Chin. Phys. B 22 520

    [27]

    Pu C Y, Ye X T, Jiang H L, Zhang F W, Lu Z W, He J B, Zhou D W 2015 Chin. Phys. B 3 275

    [28]

    Velizhanin K A, Kilina S, Sewell T D, Piryatinski A 2008 J. Phys. Chem. B 112 13252

    [29]

    Wu Z, Kalia R K, Nakano A, Vashishta P 2011 J. Chem. Phys. 134 204509

    [30]

    Long Y, Chen J 2014 Philos. Mag. 94 2656

    [31]

    Cui H L, Ji G F, Chen X R, Zhu W H, Zhao F, Wen Y, Wei D Q 2009 J. Phys. Chem. A 114 1082

    [32]

    Sorescu D C, Rice B M 2010 J. Phys. Chem. C 114 6734

    [33]

    Lee K, Murray D, Kong L, Lundqvist B I, Langreth D C 2010 Phys. Rev. B 82 081101

    [34]

    Jiang W C, Chen H, Zhang W B 2016 Chin. J. Energ. Mater. (in Chinese) [蒋文灿, 陈华, 张伟斌 2016 含能材料] (in press)

    [35]

    Kresse G, Furthmller J 1996 Comput. Mater. Sci. 6 15

    [36]

    Togo A, Oba F, Tanaka I 2008 Phys. Rev. B 78 134106

    [37]

    Birch F 1947 Phys. Rev. 71 809

    [38]

    Olinger B W, Cady H H 1976 Conference: 6. Symposium on Detonation San Diego, California, August 24-27, 1976 p224

    [39]

    Stevens L L, Velisavljevic N, Hooks D E, Dattelbaum D M 2008 Propell. Explos. Pyrot. 33 286

    [40]

    Rosen J M, Dickinson C 1969 J. Chem. Eng. Data 14 120

    [41]

    Jin Z, Liu J, Wang L L, Cao F L, Sun H 2014 Acta Phys. -Chem. Sin. 30 654 (in Chinese) [金钊, 刘建, 王丽莉, 曹风雷, 孙淮 2014 物理化学学报 30 654]

    [42]

    Liu L, Liu Y, Zybin S V, Sun H, Goddard III W A 2011 J. Phys. Chem. A 115 11016

    [43]

    Valenzano L, Slough W J, Perger W 2012 Shock Compression of Condensed Matter-2011: Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter Chicago, IIIinois, June 26-July 1, 2011 pp1191-1194

    [44]

    Xu W T 1999 Group Theory and Its Applications in Solid State Physics (Beijing: Higher Education Press) pp218-221 (in Chinese) [徐婉棠 1999 群论及其在固体物理中的应用(北京: 高等教育出版社 第218-221页)]

    [45]

    Pravica M, Yulga B, Liu Z, Tschauner O 2007 Phys. Rev. B 76 64102

    [46]

    Mcgrane S, Shreve A 2003 J. Chem. Phys. 119 5834

    [47]

    Liu H, Zhao J, Ji G, Wei D, Gong Z 2006 Phys. Lett. A 358 63

    [48]

    Jia C Q, Song T, Liu X Y, Zhang Z W, Jiang G 2013 Chin. J. Energ. Mater. 21 434 (in Chinese) [贾传强, 宋涛, 刘晓亚, 张振伟, 蒋刚 2013 含能材料 21 434]

    [49]

    Hill J R, Dlott D D 1989 J. Chem. Phys. 89 830

    [50]

    Ye S, Tonokura K, Koshi M 2003 Combust. Flame 132 240

    [51]

    Ge S H, Cheng X L, Wu L S, Yang X D 2007 J. Mol. Struct. 809 55

    [52]

    Huang K, Han R Q 1966 Solid States Physics (Beijing: People's Education Press) pp79-82 (in Chinese) [黄昆, 韩汝琦 1966 固体物理学(北京: 人民教育出版社)第79-82页]

    [53]

    Xiao H M, Fan J F, Gu Z M, Dong H S 1998 Chem. Phys. 226 15

    [54]

    Wu Q, Chen H, Xiong G, Zhu W, Xiao H 2015 J. Phys. Chem. C 29 16500

  • [1] 马泽成, 刘增霖, 程斌, 梁世军, 缪峰. 范德瓦耳斯材料的原位应变工程与应用.  , 2024, 73(11): 110701. doi: 10.7498/aps.73.20240353
    [2] 肖聪, 姚望. 范德瓦耳斯体系中的量子层电子学.  , 2023, 72(23): 237302. doi: 10.7498/aps.72.20231323
    [3] 顾梓恒, 臧强, 郑改革. 外尔半金属调制的范德瓦耳斯声子极化激元色散性质.  , 2023, 72(19): 197102. doi: 10.7498/aps.72.20230167
    [4] 孔宇晗, 王蓉, 徐明生. CuPc/MoS2范德瓦耳斯异质结荧光特性.  , 2022, 71(12): 128103. doi: 10.7498/aps.71.20220132
    [5] 黄佳贝, 廉富镯, 汪致远, 孙世涛, 李明, 张棣, 蔡晓凡, 马国栋, 麦志洪, Andy Shen, 王雷, 于葛亮. 二维范德瓦耳斯材料的超导物性研究及性能调控.  , 2022, 71(18): 187401. doi: 10.7498/aps.71.20220638
    [6] 金鑫, 陶蕾, 张余洋, 潘金波, 杜世萱. 几种范德瓦耳斯铁电材料中新奇物性的研究进展.  , 2022, 71(12): 127305. doi: 10.7498/aps.71.20220349
    [7] 李耀华, 董耀勇, 董辉, 郑学军. 二维MoS2压痕过程异质界面范德瓦耳斯力引起的撕裂行为.  , 2022, 71(19): 194601. doi: 10.7498/aps.71.20220875
    [8] 张芳, 贾利群, 孙现亭, 戴宪起, 黄奇祥, 李伟. 电场对graphene/InSe范德瓦耳斯异质结肖特基势垒的调控.  , 2020, 69(15): 157302. doi: 10.7498/aps.69.20191987
    [9] 王立鹏, 江新标, 吴宏春, 樊慧庆. 氮化铀热中子截面的第一性原理计算.  , 2018, 67(20): 202801. doi: 10.7498/aps.67.20180834
    [10] 严顺涛, 姜振益. Cu掺杂对TiNi合金马氏体相变路径影响的第一性原理研究.  , 2017, 66(13): 130501. doi: 10.7498/aps.66.130501
    [11] 曹宁通, 张雷, 吕路, 谢海鹏, 黄寒, 牛冬梅, 高永立. 酞菁铜与MoS2(0001)范德瓦耳斯异质结研究.  , 2014, 63(16): 167903. doi: 10.7498/aps.63.167903
    [12] 李细莲, 刘刚, 杜桃园, 赵晶, 吴木生, 欧阳楚英, 徐波. 应力对硅烯上锂吸附的影响.  , 2014, 63(21): 217101. doi: 10.7498/aps.63.217101
    [13] 贾雅琼, 王殊, 朱明, 张克声, 袁飞阁. 气体声弛豫过程中有效比热容与弛豫时间的分解对应关系.  , 2012, 61(9): 095101. doi: 10.7498/aps.61.095101
    [14] 周大伟, 卢成, 李根全, 宋金璠, 宋玉玲, 包刚. 高压下金属Ba的结构稳定性以及热动力学的第一原理研究.  , 2012, 61(14): 146301. doi: 10.7498/aps.61.146301
    [15] 吴延昭, 谢宁, 刘建静, 焦永芳. 单壁碳纳米管声子谱及比热计算.  , 2009, 58(11): 7787-7791. doi: 10.7498/aps.58.7787
    [16] 肖 杨, 颜晓红, 曹觉先, 丁建文. 单壁纳米碳管的声子谱研究.  , 2003, 52(7): 1720-1725. doi: 10.7498/aps.52.1720
    [17] 石筑一, 吉世印. 微观核芯+两准粒子模型中热核148—158Sm的比热容及其相变.  , 2003, 52(1): 42-47. doi: 10.7498/aps.52.42
    [18] 李 泌. 铁的原子间相互作用及声子谱.  , 2000, 49(9): 1692-1695. doi: 10.7498/aps.49.1692
    [19] 关立强, 王翠, 李贞姬, 金光星. s-f交换作用和电子交换作用对s电子比热容的影响.  , 1997, 46(8): 1598-1604. doi: 10.7498/aps.46.1598
    [20] 孙家钟, 蒋栋成. 非对称陀螺分子间的范德瓦耳斯引力问题.  , 1961, 17(12): 559-568. doi: 10.7498/aps.17.559
计量
  • 文章访问数:  8400
  • PDF下载量:  378
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-01
  • 修回日期:  2016-04-05
  • 刊出日期:  2016-06-05

/

返回文章
返回
Baidu
map