搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种加权稀疏约束稳健Capon波束形成方法

刘振 孙超 刘雄厚 郭祺丽

引用本文:
Citation:

一种加权稀疏约束稳健Capon波束形成方法

刘振, 孙超, 刘雄厚, 郭祺丽

Robust Capon beamforming with weighted sparse constraint

Liu Zhen, Sun Chao, Liu Xiong-Hou, Guo Qi-Li
PDF
导出引用
  • 为了克服标准Capon波束形成器旁瓣级高以及存在角度失配时性能急剧下降等缺点, 在稀疏约束Capon波束形成器的基础上, 提出了一种加权稀疏约束Capon波束形成器. 该方法利用波束响应的稀疏分布特性, 在标准Capon波束形成优化模型中加入旁瓣区域波束响应稀疏约束(l1 范数约束), 使旁瓣区域波束响应向量中非零元素的个数最小化; 通过阵列采样数据协方差矩阵特征分解得到信号子空间及噪声子空间, 利用信号子空间与噪声子空间的正交特性, 构造加权矩阵对稀疏约束进行加权, 使得稀疏重构时波束响应向量中不同角度对应的元素得到不同程度的约束. 该方法有效地抑制了Capon波束形成器的高旁瓣级, 加深了干扰方位零陷, 提高了阵列输出信干噪比. 由于稀疏约束, 波束响应向主瓣集中, 期望信号方向附近的波束响应都较大, 从而也提高了阵列抗导向矢量角度失配的能力. 数值仿真和水池实验验证了所提方法的有效性.
    Adaptive beamforming is widely used in the fields such as radar, sonar, wireless communication to estimate the parameters of the signal of interest (SOI) at the output of a sensor array by data-adaptive spatial filtering and interference suppression. The standard Capon beamformer (SCB) is a typical adaptive beamforming approach which provides a superior performance by minimizing the array output power while simultaneously maintaining the array response under the assumption of distortionless direction of arrival (DOA). However, the advantages in performance of SCB are obtainable only when the number of snapshots available for the sample covariance matrix estimation is large enough and the direction of the SOI is known accurately. When applied to practical situations where the aforementioned two requirements are not satisfied, SCB will suffer high sidelobe levels and performance degradation in the parameter estimates due to lack of measurements and mismatch in the steering vector.A sparsity-constrained Capon beamformer (SCCB) arises to alleviate these problems. Unlike SCB, the constraint in SCCB is composed of two parts: the original array output power constraint part and the sparse constraint part (?1 norm constraint, encouraging sparse distribution in the array responses). However, if the sparse constraint in SCCB is set too large compared with the array output power constraint part, the responses in the directions of interferences will be influenced, and a tradeoff between the ability to reduce the sidelobe levels and the ability to reject the interferences must be made. Thus, based on the SCCB, a new robust Capon beamformer utilizing a weighted sparse constraint is proposed in this paper. In the proposed method, the sparse constraint part is replaced by a weighted sparse constraint, which is applied only to the sidelobe regions of the beampattern. By doing so, the number of the non-zero elements in the sidelobe response is minimized, resulting in an enhanced mainlobe region and suppressed sidelobe ones.In sparse recovery, the sparse constraint (the l1 norm constraint) does not necessarily enforce democratic penalization, which means that larger coefficients are penalized more heavily than smaller coefficients. Based on such a consideration, a weighting matrix can be constructed to put larger weights in the interferences directions to discourage their responses, and put smaller weights to maintain the responses in the remaining parts of the sidelobe regions. In this paper, the weighting matrix is obtained by utilizing the orthogonality between the signal subspace and the noise subspace. Since the steering vectors corresponding to the interferences and the SOI span the same space as the signal subspace, the inner products between the steering vectors in the interference directions and the noise subspace will produce zeroes ideally. By taking the reciprocals of these inner products, large values will yield in the interference directions while small values are obtained in other directions in the sidelobe regions. Using these values as the weights to the sparse constraint, a beampattern with deeper nulls, lower sidelobes, and better robustness to steering vector mismatch is obtainable as compared with SCB and SCCB. Besides, the output SINR is also effectively improved. Numerical simulations and a water-tank experiment are conducted to demonstrate the effectiveness of the proposed method.
      通信作者: 孙超, csun@nwpu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11274252,51479169)、声场声信息国家重点实验室开放课题研究基金(批准号:SKLA201501)、中央高校基本科研业务费(批准号:3102015ZY011)和西北工业大学基础研究基金(批准号:JC20110208)资助的课题.
      Corresponding author: Sun Chao, csun@nwpu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11274252, 51479169), the Opening Project of State Key Laboratory of Acoustics, China (Grant No. SKLA201501), the Fundamental Research Fund for the Central Universities, China (Grant No. 3102015ZY011), and the Northwestern Polytechnical University Foundation for Basic Research, China (Grant No. JC20110208).
    [1]

    Haykin S 1985 Array Signal Processing (New Jersey: Prentice-Hall) pp15-77

    [2]

    Harry L, Van T 2002 Detection, Estimation, and Modulation Theory, Part IV, Optimum Array Processing (New York: Wiley) pp728-751

    [3]

    Capon J 1969 Proc. IEEE 57 1408

    [4]

    Liu J, Gershman A B, Luo Z Q, Kon M W 2003 IEEE Sign. Process. Lett. 10 331

    [5]

    Cox H 1973 J. Acoust. Soc. Am 54 771

    [6]

    Carlson B D 1988 IEEE Trans. Aerosp. Electron. Syst. 24 397

    [7]

    Besson O, Vincent F 2005 IEEE Trans. Sign. Process. 53 452

    [8]

    Feldman D D, Griffiths L J 1994 IEEE Trans. Sign. Process. 42 867

    [9]

    Chang L, Yeh C C 1992 IEEE Trans. Antenna Propag. 40 1336

    [10]

    Li J, Stoica P, Wang Z 2003 IEEE Trans. Sign. Process. 51 1702

    [11]

    Li J, Stoica P, Wang Z 2004 IEEE Trans. Sign. Process. 52 2407

    [12]

    Vorobyov S A, Gershman A B, Luo Z Q 2003 IEEE Trans. Sign. Process. 51 313

    [13]

    Huang C, Sun D J, Zhang D L, Teng T T 2014 Acta Phys. Sin. 63 188401 (in Chinese) [黄聪, 孙大军, 张殿伦, 滕婷婷 2014 63 188401]

    [14]

    Wang Y, Wu W F, Fan Z, Liang G L 2014 Acta Phys. Sin. 63 154303 (in Chinese) [王燕, 吴文峰, 范展, 梁国龙 2014 63 154303]

    [15]

    Wang F, Balakrishnan V, Zhou P Y 2003 IEEE Trans. Sign. Process. 51 1172

    [16]

    Liang G L, Ma W, Fan Z, Wang Y L 2013 Acta Phys. Sin. 62 144302 (in Chinese) [梁国龙, 马巍, 范展, 王逸林 2013 62 144302]

    [17]

    Xiao D, Cai H K, Zheng H Y 2015 Chin. Phys. B 24 060505

    [18]

    Sun Y L, Tao J X 2014 Chin. Phys. B 23 078703

    [19]

    Zhang Y, Ng B P, Wan Q 2008 IEEE Sign. Process. Lett. 44 615

    [20]

    Liu Y P, Wan Q 2010 Prog. Electromagn. Res. Lett. 16 53

    [21]

    Li J, Stoica P 2006 Robust Adaptive Beamforming (New York: Wiley) pp1-94

    [22]

    Rao B D, Engan K, Cotter S F, Palmer J, Delado K K 2003 IEEE Trans. Sign. Process. 51 760

    [23]

    Liu Y P 2011 Ph. D. Dissertation (Chengdu: University of Electronic Science and Technology of China) (in Chinese) [刘翼鹏 2011 博士学位论文(成都: 电子科技大学)]

    [24]

    Chen S S, Donoho D L, Saunders M A 2001 SIAM Review 43 129

    [25]

    Cands E J, Wakin M B, Boyd S P 2007 J. Fourier Anal. Appl. 14 877

    [26]

    Zheng C, Li G, Zhang H, Wang X 2011 Proc. IEEE Int. Conf. Acoust., Speech, Signal Process. Prague, Czech Republic, May 22-27, 2011 p2856

    [27]

    Wang Y L, Chen H, Peng Y N, Wan Q 2004 Spatial Spectrum Estimation Theory and Algorithms (Beijing:Tsinghua University Press) pp54-55 (in Chinese) [王永良, 陈辉, 彭应宁, 万群 2004 空间谱估计理论与算法 (北京:清华大学出版社) 第54-55页]

  • [1]

    Haykin S 1985 Array Signal Processing (New Jersey: Prentice-Hall) pp15-77

    [2]

    Harry L, Van T 2002 Detection, Estimation, and Modulation Theory, Part IV, Optimum Array Processing (New York: Wiley) pp728-751

    [3]

    Capon J 1969 Proc. IEEE 57 1408

    [4]

    Liu J, Gershman A B, Luo Z Q, Kon M W 2003 IEEE Sign. Process. Lett. 10 331

    [5]

    Cox H 1973 J. Acoust. Soc. Am 54 771

    [6]

    Carlson B D 1988 IEEE Trans. Aerosp. Electron. Syst. 24 397

    [7]

    Besson O, Vincent F 2005 IEEE Trans. Sign. Process. 53 452

    [8]

    Feldman D D, Griffiths L J 1994 IEEE Trans. Sign. Process. 42 867

    [9]

    Chang L, Yeh C C 1992 IEEE Trans. Antenna Propag. 40 1336

    [10]

    Li J, Stoica P, Wang Z 2003 IEEE Trans. Sign. Process. 51 1702

    [11]

    Li J, Stoica P, Wang Z 2004 IEEE Trans. Sign. Process. 52 2407

    [12]

    Vorobyov S A, Gershman A B, Luo Z Q 2003 IEEE Trans. Sign. Process. 51 313

    [13]

    Huang C, Sun D J, Zhang D L, Teng T T 2014 Acta Phys. Sin. 63 188401 (in Chinese) [黄聪, 孙大军, 张殿伦, 滕婷婷 2014 63 188401]

    [14]

    Wang Y, Wu W F, Fan Z, Liang G L 2014 Acta Phys. Sin. 63 154303 (in Chinese) [王燕, 吴文峰, 范展, 梁国龙 2014 63 154303]

    [15]

    Wang F, Balakrishnan V, Zhou P Y 2003 IEEE Trans. Sign. Process. 51 1172

    [16]

    Liang G L, Ma W, Fan Z, Wang Y L 2013 Acta Phys. Sin. 62 144302 (in Chinese) [梁国龙, 马巍, 范展, 王逸林 2013 62 144302]

    [17]

    Xiao D, Cai H K, Zheng H Y 2015 Chin. Phys. B 24 060505

    [18]

    Sun Y L, Tao J X 2014 Chin. Phys. B 23 078703

    [19]

    Zhang Y, Ng B P, Wan Q 2008 IEEE Sign. Process. Lett. 44 615

    [20]

    Liu Y P, Wan Q 2010 Prog. Electromagn. Res. Lett. 16 53

    [21]

    Li J, Stoica P 2006 Robust Adaptive Beamforming (New York: Wiley) pp1-94

    [22]

    Rao B D, Engan K, Cotter S F, Palmer J, Delado K K 2003 IEEE Trans. Sign. Process. 51 760

    [23]

    Liu Y P 2011 Ph. D. Dissertation (Chengdu: University of Electronic Science and Technology of China) (in Chinese) [刘翼鹏 2011 博士学位论文(成都: 电子科技大学)]

    [24]

    Chen S S, Donoho D L, Saunders M A 2001 SIAM Review 43 129

    [25]

    Cands E J, Wakin M B, Boyd S P 2007 J. Fourier Anal. Appl. 14 877

    [26]

    Zheng C, Li G, Zhang H, Wang X 2011 Proc. IEEE Int. Conf. Acoust., Speech, Signal Process. Prague, Czech Republic, May 22-27, 2011 p2856

    [27]

    Wang Y L, Chen H, Peng Y N, Wan Q 2004 Spatial Spectrum Estimation Theory and Algorithms (Beijing:Tsinghua University Press) pp54-55 (in Chinese) [王永良, 陈辉, 彭应宁, 万群 2004 空间谱估计理论与算法 (北京:清华大学出版社) 第54-55页]

  • [1] 江璐冰, 李宁轩, 吉凯. 周期驱动量子伊辛模型中非热统计的形成与抑制.  , 2020, 69(14): 140501. doi: 10.7498/aps.69.20191657
    [2] 汪芃, 李倩昀, 黄志精, 唐国宁. 在兴奋-抑制混沌神经元网络中有序波的自发形成.  , 2018, 67(17): 170501. doi: 10.7498/aps.67.20180506
    [3] 李鹏, 章新华, 付留芳, 曾祥旭. 一种基于模态域波束形成的水平阵被动目标深度估计.  , 2017, 66(8): 084301. doi: 10.7498/aps.66.084301
    [4] 谢磊, 孙超, 刘雄厚, 蒋光禹. 陆架斜坡海域声场特性对常规波束形成阵增益的影响.  , 2016, 65(14): 144303. doi: 10.7498/aps.65.144303
    [5] 刘亚奇, 刘成城, 赵拥军, 朱健东. 基于时频分析的多目标盲波束形成算法.  , 2015, 64(11): 114302. doi: 10.7498/aps.64.114302
    [6] 范展, 梁国龙, 付进, 王燕. 基于信号子空间重构的鲁棒子区域Frost波束形成.  , 2015, 64(5): 054303. doi: 10.7498/aps.64.054303
    [7] 王平, 程娜, 龚志辉, 王林泓. 一种广义旁瓣相消的超声成像算法.  , 2015, 64(23): 238701. doi: 10.7498/aps.64.238701
    [8] 郭业才, 张宁, 吴礼福, 孙心宇. 基于自适应加权约束最小二乘法的麦克风阵列稳健频率不变波束形成算法.  , 2015, 64(17): 174303. doi: 10.7498/aps.64.174303
    [9] 王伟远, 蒋式勤, 周大方, 朱嘉辰, 闫玉蕊, 权薇薇. 基于多时窗波束形成器方法的心脏磁场信号分析.  , 2014, 63(24): 248702. doi: 10.7498/aps.63.248702
    [10] 邓承志, 田伟, 陈盼, 汪胜前, 朱华生, 胡赛凤. 基于局部约束群稀疏的红外图像超分辨率重建.  , 2014, 63(4): 044202. doi: 10.7498/aps.63.044202
    [11] 肖夏, 宋航, 王梁, 王宗杰, 路红. 早期乳腺肿瘤的超宽带微波稳健波束形成成像检测系统.  , 2014, 63(19): 194102. doi: 10.7498/aps.63.194102
    [12] 王燕, 吴文峰, 范展, 梁国龙. 一种新的稳健波束形成算法及其一维搜索策略.  , 2014, 63(15): 154303. doi: 10.7498/aps.63.154303
    [13] 黄聪, 孙大军, 张殿伦, 滕婷婷. 双基地多输入多输出虚拟阵列的稳健低旁瓣波束优化技术.  , 2014, 63(18): 188401. doi: 10.7498/aps.63.188401
    [14] 宋长新, 马克, 秦川, 肖鹏. 结合稀疏编码和空间约束的红外图像聚类分割研究.  , 2013, 62(4): 040702. doi: 10.7498/aps.62.040702
    [15] 王燕, 吴文峰, 范展, 梁国龙. 基于半定规划和秩-1分解的稳健波束形成.  , 2013, 62(18): 184302. doi: 10.7498/aps.62.184302
    [16] 屠德民, 王霞, 吕泽鹏, 吴锴, 彭宗仁. 以能带理论诠释直流聚乙烯绝缘中空间电荷的形成和抑制机理.  , 2012, 61(1): 017104. doi: 10.7498/aps.61.017104
    [17] 杨薇, 刘迎, 肖立峰, 高树理. 两级串联声光可调谐滤波器旁瓣抑制的研究.  , 2009, 58(1): 328-332. doi: 10.7498/aps.58.328
    [18] 周耐根, 周 浪. 采用纳米晶柱阵列衬底抑制失配位错形成的分子动力学模拟研究.  , 2008, 57(5): 3064-3070. doi: 10.7498/aps.57.3064
    [19] 汪茂泉, 赵晴初. 托卡马克中撕裂模的抑制.  , 1984, 33(4): 449-456. doi: 10.7498/aps.33.449
    [20] 任朗, 卢明儒. 线形天线阵辐射图形中旁瓣的减小.  , 1961, 17(12): 592-599. doi: 10.7498/aps.17.592
计量
  • 文章访问数:  7337
  • PDF下载量:  322
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-18
  • 修回日期:  2016-01-29
  • 刊出日期:  2016-05-05

/

返回文章
返回
Baidu
map