-
沿半Heusler结构CoTiSb合金的[001]晶体学方向, 利用Ni元素连续替换一条原子链上的Ti, Sb原子, 在半导体性CoTiSb基体中设计了一系列均匀分布的Ni基单原子链阵列. 采用第一性原理方法, 研究了Ni基单原子链的电子结构和磁性质, 发现Ni-Sb单原子链具有高度自旋极化率和空穴导电特性, Ni-Ti及Ni-Ni单原子链具有100%的自旋极化率, 并且在CoTiSb基体中形成了以这种Ni基单原子链为中心的、尺寸非常小的单自旋纳米柱通道.
-
关键词:
- 半Heusler合金 /
- 高自旋极化 /
- 单原子链 /
- 第一性原理计算
Since the spin-transfer effect was predicted in 1996, the direct-current-switched magnetic storage has received much attention. A slender nanopillar with high spin-polarized ratio of the conductive electrons is the most favorable for realizing the direct-current-switched magnetic memory. Wang et al. (Sup. Mic. 2015 86 493) showed a supercell idea used to design the nanopillar array in a semiconductor matrix. Based on this idea, in this paper, the Ni-based single atomic chains are designed in the semiconductive CoTiSb matrix by continuously substituting Ni for Ti, Sb, or Ti-Sb in the [001] crystallographic direction. These single atomic chains are uniformly distributed in the matrix. We investigate the electronic structures and magnetic properties of CoTiSb supercells with the Ni-based single atomic chains by using the first-principle calculations. The calculation results show that the single atomic chains of Ni-Sb (achieved by substituting Ni for Ti) have a high spin polarization and hole conduction properties. The single atomic chain of Ni-Ti (achieved by substituting Ni for Sb) and Ni-Ni single atomic chain (achieved by substituting Ni for Ti and Sb) both have a 100% spin polarization ration at the Fermi level. The Ni-based single atomic chain has an effect on the electronic structures of other atoms surrounding it in about a lattice length and forms a nanopillar with the center of the Ni-based single atomic chain. We predict that CoTiSb matrixes with the Ni-Ti and Ni-Ni single atomic chains will be good candidates for the direct-current-switched magnetic storage.-
Keywords:
- half Heusler alloy /
- high spin polarization /
- single atomic chain /
- first-principles calculations
[1] Slonczewski J C 1996 Magn. Magn. Mater. 159 L1
[2] Tsoi M, Jansen A G M, Bass J 1998 Phys. Rev. Lett. 80 4281
[3] Sun J Z 1999 Magn. Magn. Mater. 202 157
[4] Bussman K, Prinz G A, Cheng S F 1999 Appl. Phys. Lett. 75 2476
[5] Albert F J, Katine J A, Buhrman R A 2000 Appl. Phys. Lett. 77 3809
[6] Myers E B, Ralph D C, Katine J A 1999 Science 285 867
[7] Katine J A, Albert F J, Buhrman R A 2000 Phys. Rev. Lett. 84 3139
[8] Jiang Y {2008 Prog. Phys. 28 215 (in Chinese) [姜勇 2008 物理学进展 28 215]
[9] Jin W, Wan Z M, Liu Y W {2011 Acta Phys. Sin. 60 017502 (in Chinese) [金伟, 万振茂, 刘要稳 2011 60 017502]
[10] Katine J A, Albert F J, Buhrman R A 2000 Appl. Phys. Lett. 76 354
[11] Berger L 1996 Phys. Rev. B 54 9353
[12] Bazaliy Ya B, Jones B A, Zhang S C 1998 Phys. Rev. B 57 R3213
[13] Weintal X, Myers E B, Brouwer P W 2000 Phys. Rev. B 62 12317
[14] Wang L Y, Dai X F, Wang X T, Li P P, Xia Q L, Zhang Y, Cui Y T, Liu G D 2015 Sup. Mic. 86 493
[15] Segall M D, Lindan P J D, Probert M J 2002 J. Phys. Matter 14 2717
[16] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[17] Perwdew J P, Chevary J A, Vosko S H 1992 Phys. Rev. B 46 6671
[18] Skaftouros S, zdoğan K, aşioğlu E, Galanakis I 2013 Appl. Phys. Lett. 102 022402
-
[1] Slonczewski J C 1996 Magn. Magn. Mater. 159 L1
[2] Tsoi M, Jansen A G M, Bass J 1998 Phys. Rev. Lett. 80 4281
[3] Sun J Z 1999 Magn. Magn. Mater. 202 157
[4] Bussman K, Prinz G A, Cheng S F 1999 Appl. Phys. Lett. 75 2476
[5] Albert F J, Katine J A, Buhrman R A 2000 Appl. Phys. Lett. 77 3809
[6] Myers E B, Ralph D C, Katine J A 1999 Science 285 867
[7] Katine J A, Albert F J, Buhrman R A 2000 Phys. Rev. Lett. 84 3139
[8] Jiang Y {2008 Prog. Phys. 28 215 (in Chinese) [姜勇 2008 物理学进展 28 215]
[9] Jin W, Wan Z M, Liu Y W {2011 Acta Phys. Sin. 60 017502 (in Chinese) [金伟, 万振茂, 刘要稳 2011 60 017502]
[10] Katine J A, Albert F J, Buhrman R A 2000 Appl. Phys. Lett. 76 354
[11] Berger L 1996 Phys. Rev. B 54 9353
[12] Bazaliy Ya B, Jones B A, Zhang S C 1998 Phys. Rev. B 57 R3213
[13] Weintal X, Myers E B, Brouwer P W 2000 Phys. Rev. B 62 12317
[14] Wang L Y, Dai X F, Wang X T, Li P P, Xia Q L, Zhang Y, Cui Y T, Liu G D 2015 Sup. Mic. 86 493
[15] Segall M D, Lindan P J D, Probert M J 2002 J. Phys. Matter 14 2717
[16] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[17] Perwdew J P, Chevary J A, Vosko S H 1992 Phys. Rev. B 46 6671
[18] Skaftouros S, zdoğan K, aşioğlu E, Galanakis I 2013 Appl. Phys. Lett. 102 022402
计量
- 文章访问数: 6326
- PDF下载量: 160
- 被引次数: 0