搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低温退火的X射线W/Si多层膜应力和结构性能

张金帅 黄秋实 蒋励 齐润泽 杨洋 王风丽 张众 王占山

引用本文:
Citation:

低温退火的X射线W/Si多层膜应力和结构性能

张金帅, 黄秋实, 蒋励, 齐润泽, 杨洋, 王风丽, 张众, 王占山

Stress and structure properties of X-ray W/Si multilayer under low temperature annealing

Zhang Jin-Shuai, Huang Qiu-Shi, Jiang Li, Qi Run-Ze, Yang Yang, Wang Feng-Li, Zhang Zhong, Wang Zhan-Shan
PDF
导出引用
  • W/Si多层膜反射镜在硬X射线天文望远镜中有重要应用. 为减小其应力对反射镜面形和望远镜分辨率的影响, 同时保证较高的反射率, 采用150, 175和200 ℃ 的低温退火工艺对采用磁控溅射镀制的W/Si周期多层膜进行后处理. 利用掠入射X射线反射测试和样品表面面形测试对退火前后W/Si多层膜的应力和结构进行表征. 结果表明, 在150 ℃ 退火3 h 后, 多层膜1级峰反射率和膜层结构几乎没有发生变化, 应力减少约27%; 在175 ℃ 退火3 h后, 多层膜膜层结构开始发生变化, 应力减少约50%; 在200 ℃退火3 h 后, 多层膜应力减小超过60%, 但1级布拉格峰反射率相对下降17%, 且膜层结构发生了较大变化. W, Si界面层的增大和相互扩散加剧是应力和反射率下降的主要原因.
    The X-ray timing and polarization telescope proposed in China is for imaging spectroscopy in an energy range of 1-30 keV. To obtain the high energy spectrum response with a large effective area, W/Si multilayer mirrors each with a mirror thickness of only 0.3 mm are used. This makes the figure accuracy of the mirror and the distortion caused by the multilayer stress an important issue during the telescope development. W/Si multilayer mirror is an important component of X-ray telescope for astronomical observation. To reduce the effect of the multilayer stress and maintain a high reflectivity at the same time, the W/Si multilayers prepared by magnetron sputtering deposition are annealed at low temperatures of 150 ℃, 175 ℃ and 200 ℃, respectively, for 3 h. The stress of the multilayer is determined based on the surface figure measurements of each sample before and after annealing. The X-ray reflectance and layer structure of the multilayer are characterized by the grazing incidence X-ray reflectometry (GIXR) and the reflectance fitting curves. The first Bragg peak reflectivity of the as-deposited sample is 67% at 8.04 keV and the multilayer stress is around -260 MPa. After annealing at 150 ℃ for 3 h, the first Bragg peak reflectivity and the layer structure are almost the same as before annealing, while the stress reduces 27%. The fitting results display almost the same interface widths of the multilayer before and after annealing. As the temperature increases to 175 ℃, the first Bragg peak reflectivity drops by about 2%. The multilayer structure begins to deteriorate and the W/Si interface widths increase from 0.346 nm/0.351 nm to 0.356 nm/0.389 nm, according to the fitting results, while the stress reduces about 50%. After annealing at 200 ℃ for 3 h, the stress reduces 60% and the stress decreases down to about -86 MPa. However, the first Bragg peak reflectivity drops by 17%, and the layer structure undergoes significant change after annealing. The W/Si interface widths increase from 0.352 nm/0.364 nm to 0.364 nm/0.405 nm. The GIXR results also show that the d-spacing between the multilayers decreases after annealing, and a higher annealing temperature causes a larger decrease. The stress reduction should be mainly caused by the enhanced atomic diffusions at the interface and inside the layer structure during the annealing. The enlarged interface and the possible compound formation contribute to the decrease of X-ray reflectance and the layer compactness. These results provide important guidance for developing low-stress X-ray multilayer mirrors.
      通信作者: 王占山, wangzs@tongji.edu.cn
    • 基金项目: 中国科学院战略性先导科技专项(批准号: XDA04060605)和国家重大科学仪器设备开发专项(批准号: 2012YQ24026402)资助的课题.
      Corresponding author: Wang Zhan-Shan, wangzs@tongji.edu.cn
    • Funds: Project supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA04060605) and the National Key Scientific Instrument and Equipment Development Projects, China (Grant No. 2012YQ24026402).
    [1]

    Kang H C, Maser J, Stephenson G B, Liu C, Conley R, Macrander A T, Vogt S 2006 Phys. Rev. Lett. 96 127401

    [2]

    Hu X, Zhang J Y, Yang G H, Liu S Y, Ding Y K 2009 Acta Phys. Sin 58 6397 (in Chinese) [胡昕, 张继彦, 杨国洪, 刘慎业, 丁永坤 2009 58 6397]

    [3]

    Kondo Y, Ejima T 2002 Surf. Rev. Lett. 9 521

    [4]

    Slemzin V A, Kuzin S V, Zhitnik I A, Delaboudiniere J P, Auchere F, Zhukov A N, Linden R V, Bugaenko O I, Lgnat'ev A N, Mitrofanov A V, Pertsov A A, Oparin S N, Stepanov A I, Afanas'ev A N 2005 Sol. Syst. Res. 39 489

    [5]

    Liu Z, Cheng B W, Li Y M, Li C B, Xue C L, Wang Q M 2013 Chin. Phys. B 22 116804

    [6]

    Gupta R, Gupta A, Leitenberger W, Ruffer R 2012 Phys. Rev. B 85 075401

    [7]

    Najar A, Omi H, Tawara T 2015 Opt. Express 23 7021

    [8]

    Jiang Z, Chen X K 2015 Acta Phys. Sin. 64 216802 (in Chinese) [蒋钊, 陈学康 2015 64 216802]

    [9]

    Windt D L 2000 J. Vac. Sci. Technol. A 18 980

    [10]

    Kortright J B, Joksch St, Ziegler E 1991 J. Appl. Phys. 69 168

    [11]

    Dupuis V, Ravet M F, Tte C, Piecuch M, Vidal B 1990 J. Appl. Phys. 68 3348

    [12]

    Montcalm C 2001 Opt. Eng. 40 469

    [13]

    Barthelmess M, Bajt S 2011 Appl. Opt. 50 1610

    [14]

    Wang Z S, Wang F L, Zhang Z, Cheng X B, Qin S J, Chen L Y 2005 Sci. China: Ser. G 48 559

    [15]

    Windt D L 1998 Comput. Phys. 12 360

    [16]

    He X C, Shen H S, Wu Z Q 1990 J. Appl. Phys. 67 3481

    [17]

    Voronov D L, Zubarev E N, Kondratenko V V, Pershin Y P, Sevryukova V A, Bugayev Y A 2006 Thin Solid Films 513 152

    [18]

    Kurmaev E Z, Shamin S N, Galakhov V R, Wiech G, Majkova E, Luby S 1995 J. Mater. Res. 10 907

    [19]

    Cecil T, Miceli A, Quaranta O, Liu C, Rosenmann D, McHugh S, Mazin B 2012 Appl. Phys. Lett. 101 032601

    [20]

    Nyabero S L, van de Kruijs R W E, Yakshin A E, Zoethout E, von Blanckenhagen G, Bosgra J, Loch R A, Bijkerk F 2013 J. Appl. Phys. 113 144310

    [21]

    Jergel M, Bochnček Z, Majkov E, Senderk R, Luby 1996 Appl. Phys. Lett. 69 919

    [22]

    Windt D L, Christensen F E, Craig W W, Hailey C, Harrison F A, Jimenez-Garate M, Kalyanaraman R, Mao P H 2000 J. Appl. Phys. 88 460

    [23]

    Freund L B, Suresh S 2003 Thin Film Materials-Stress, Defect Formation and Surface Evolution (London: Cambridge University Press) pp66-90

    [24]

    Liu C, Conley R, Macrander A T 2006 Proc. SPIE San Diego, August 13, 2006 p63170J

    [25]

    Baglin J, Dempsey J, Hammer W, d'Heurle F, Petersson S, Serrano C 1979 J. Electron. Mater. 8 641

    [26]

    Cao B, Bao L M, Li G P, He S H 2006 Acta Phys. Sin. 55 6550 (in Chinese) [曹博, 包良满, 李公平, 何山虎 2006 55 6550]

    [27]

    Li Y S, Wu X C, Liu W, Hou Z Y, Mei H J 2015 Chin. Phys. B 24 126401

    [28]

    Feng D 2000 Metallogrphy Physics (Vol. 1) (Beijing: Science Press) p223 (in Chinese) [冯端 2000 金属物理学 (第一卷)(北京: 科学出版社) 第223页]

  • [1]

    Kang H C, Maser J, Stephenson G B, Liu C, Conley R, Macrander A T, Vogt S 2006 Phys. Rev. Lett. 96 127401

    [2]

    Hu X, Zhang J Y, Yang G H, Liu S Y, Ding Y K 2009 Acta Phys. Sin 58 6397 (in Chinese) [胡昕, 张继彦, 杨国洪, 刘慎业, 丁永坤 2009 58 6397]

    [3]

    Kondo Y, Ejima T 2002 Surf. Rev. Lett. 9 521

    [4]

    Slemzin V A, Kuzin S V, Zhitnik I A, Delaboudiniere J P, Auchere F, Zhukov A N, Linden R V, Bugaenko O I, Lgnat'ev A N, Mitrofanov A V, Pertsov A A, Oparin S N, Stepanov A I, Afanas'ev A N 2005 Sol. Syst. Res. 39 489

    [5]

    Liu Z, Cheng B W, Li Y M, Li C B, Xue C L, Wang Q M 2013 Chin. Phys. B 22 116804

    [6]

    Gupta R, Gupta A, Leitenberger W, Ruffer R 2012 Phys. Rev. B 85 075401

    [7]

    Najar A, Omi H, Tawara T 2015 Opt. Express 23 7021

    [8]

    Jiang Z, Chen X K 2015 Acta Phys. Sin. 64 216802 (in Chinese) [蒋钊, 陈学康 2015 64 216802]

    [9]

    Windt D L 2000 J. Vac. Sci. Technol. A 18 980

    [10]

    Kortright J B, Joksch St, Ziegler E 1991 J. Appl. Phys. 69 168

    [11]

    Dupuis V, Ravet M F, Tte C, Piecuch M, Vidal B 1990 J. Appl. Phys. 68 3348

    [12]

    Montcalm C 2001 Opt. Eng. 40 469

    [13]

    Barthelmess M, Bajt S 2011 Appl. Opt. 50 1610

    [14]

    Wang Z S, Wang F L, Zhang Z, Cheng X B, Qin S J, Chen L Y 2005 Sci. China: Ser. G 48 559

    [15]

    Windt D L 1998 Comput. Phys. 12 360

    [16]

    He X C, Shen H S, Wu Z Q 1990 J. Appl. Phys. 67 3481

    [17]

    Voronov D L, Zubarev E N, Kondratenko V V, Pershin Y P, Sevryukova V A, Bugayev Y A 2006 Thin Solid Films 513 152

    [18]

    Kurmaev E Z, Shamin S N, Galakhov V R, Wiech G, Majkova E, Luby S 1995 J. Mater. Res. 10 907

    [19]

    Cecil T, Miceli A, Quaranta O, Liu C, Rosenmann D, McHugh S, Mazin B 2012 Appl. Phys. Lett. 101 032601

    [20]

    Nyabero S L, van de Kruijs R W E, Yakshin A E, Zoethout E, von Blanckenhagen G, Bosgra J, Loch R A, Bijkerk F 2013 J. Appl. Phys. 113 144310

    [21]

    Jergel M, Bochnček Z, Majkov E, Senderk R, Luby 1996 Appl. Phys. Lett. 69 919

    [22]

    Windt D L, Christensen F E, Craig W W, Hailey C, Harrison F A, Jimenez-Garate M, Kalyanaraman R, Mao P H 2000 J. Appl. Phys. 88 460

    [23]

    Freund L B, Suresh S 2003 Thin Film Materials-Stress, Defect Formation and Surface Evolution (London: Cambridge University Press) pp66-90

    [24]

    Liu C, Conley R, Macrander A T 2006 Proc. SPIE San Diego, August 13, 2006 p63170J

    [25]

    Baglin J, Dempsey J, Hammer W, d'Heurle F, Petersson S, Serrano C 1979 J. Electron. Mater. 8 641

    [26]

    Cao B, Bao L M, Li G P, He S H 2006 Acta Phys. Sin. 55 6550 (in Chinese) [曹博, 包良满, 李公平, 何山虎 2006 55 6550]

    [27]

    Li Y S, Wu X C, Liu W, Hou Z Y, Mei H J 2015 Chin. Phys. B 24 126401

    [28]

    Feng D 2000 Metallogrphy Physics (Vol. 1) (Beijing: Science Press) p223 (in Chinese) [冯端 2000 金属物理学 (第一卷)(北京: 科学出版社) 第223页]

  • [1] 周贤明, 尉静, 程锐, 梅策香, 曾利霞, 王兴, 梁昌慧, 赵永涛, 张小安. 数百MeV/u高能区C6+离子激发W的L壳层 X射线.  , 2022, 71(11): 113201. doi: 10.7498/aps.70.20212322
    [2] 周贤明, 尉静, 程锐, 梅策香, 曾利霞, 王兴, 梁昌慧, 赵永涛, 张小安. 数百MeV/u高能区C6+离子激发W的L X射线研究.  , 2022, 0(0): 0-0. doi: 10.7498/aps.71.20212322
    [3] 邢海英, 郑智健, 张子涵, 吴文静, 郭志英. 应力调控BlueP/X Te2 (X = Mo, W)范德瓦耳斯异质结电子结构及光学性质理论研究.  , 2021, 70(6): 067101. doi: 10.7498/aps.70.20201728
    [4] 刘保剑, 段微波, 李大琪, 余德明, 陈刚, 王天洪, 刘定权. 退火温度对Ta2O5/SiO2多层反射膜结构和应力特性的影响.  , 2019, 68(11): 114208. doi: 10.7498/aps.68.20182247
    [5] 郭子政, 邓海东, 黄佳声, 熊万杰, 徐初东. 应力调制的自旋转矩临界电流.  , 2014, 63(13): 138501. doi: 10.7498/aps.63.138501
    [6] 周贤明, 赵永涛, 程锐, 王兴, 雷瑜, 孙渊博, 王瑜玉, 徐戈, 任洁茹, 张小安, 梁昌慧, 李耀宗, 梅策香, 肖国青. H+和Ar11+激发Si的K壳层X射线发射研究.  , 2013, 62(8): 083201. doi: 10.7498/aps.62.083201
    [7] 李佳, 房奇, 罗炳池, 周民杰, 李恺, 吴卫东. Be薄膜应力的X射线掠入射侧倾法分析.  , 2013, 62(14): 140701. doi: 10.7498/aps.62.140701
    [8] 王程, 王冠宇, 张鹤鸣, 宋建军, 杨晨东, 毛逸飞, 李永茂, 胡辉勇, 宣荣喜. 单轴、双轴应变Si拉曼谱应力模型.  , 2012, 61(4): 047203. doi: 10.7498/aps.61.047203
    [9] 孙云, 王圣来, 顾庆天, 许心光, 丁建旭, 刘文洁, 刘光霞, 朱胜军. 利用高分辨X射线衍射研究磷酸二氢钾晶体晶格应变应力.  , 2012, 61(21): 210203. doi: 10.7498/aps.61.210203
    [10] 罗庆洪, 娄艳芝, 赵振业, 杨会生. 退火对AlTiN多层薄膜结构及力学性能影响.  , 2011, 60(6): 066201. doi: 10.7498/aps.60.066201
    [11] 谷文萍, 郝跃, 张进城, 王冲, 冯倩, 马晓华. 高场应力及栅应力下AlGaN/GaN HEMT器件退化研究.  , 2009, 58(1): 511-517. doi: 10.7498/aps.58.511
    [12] 杨帆, 马瑾, 孔令沂, 栾彩娜, 朱振. 金属有机物化学气相沉积法生长Ga2(1-x)In2xO3薄膜的结构及光电性能研究.  , 2009, 58(10): 7079-7082. doi: 10.7498/aps.58.7079
    [13] 赵栋才, 任 妮, 马占吉, 邱家稳, 肖更竭, 武生虎. 掺硅类金刚石膜的制备与力学性能研究.  , 2008, 57(3): 1935-1940. doi: 10.7498/aps.57.1935
    [14] 靳惠明, Felix Adriana, Aroyave Majorri. 离子注钇对镍900℃高温氧化行为及氧化膜性能的影响研究.  , 2006, 55(11): 6157-6162. doi: 10.7498/aps.55.6157
    [15] 王瑞敏, 陈光德, 竹有章. 六方相InGaN外延膜的显微Raman散射.  , 2006, 55(2): 914-919. doi: 10.7498/aps.55.914
    [16] 尚淑珍, 邵建达, 沈 健, 易 葵, 范正修. 退火对电子束热蒸发193nm Al2O3/MgF2反射膜性能的影响.  , 2006, 55(5): 2639-2643. doi: 10.7498/aps.55.2639
    [17] 何宝平, 王桂珍, 周 辉, 龚建成, 罗尹虹, 姜景和. NMOS器件不同剂量率γ射线辐射响应的理论预估.  , 2003, 52(1): 188-191. doi: 10.7498/aps.52.188
    [18] 郭栋, 蔡锴, 李龙土, 桂治轮. 电解有机溶液法在Si表面制备类金刚石薄膜及退火对其结构的影响.  , 2001, 50(12): 2413-2417. doi: 10.7498/aps.50.2413
    [19] 王永谦, 陈长勇, 陈维德, 杨富华, 刁宏伟, 许振嘉, 张世斌, 孔光临, 廖显伯. a-Si∶O∶H薄膜微结构及其高温退火行为研究.  , 2001, 50(12): 2418-2422. doi: 10.7498/aps.50.2418
    [20] 王晓东, 刘会赟, 牛智川, 封松林. 不同组分InxGa1-xAs(0≤x≤0.3)覆盖层对自组织InAs量子点的影响.  , 2000, 49(11): 2230-2234. doi: 10.7498/aps.49.2230
计量
  • 文章访问数:  6801
  • PDF下载量:  194
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-30
  • 修回日期:  2016-01-25
  • 刊出日期:  2016-04-05

/

返回文章
返回
Baidu
map