搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

混合层流场中涡结构对流速度的特性

郭广明 刘洪 张斌 张忠阳 张庆兵

引用本文:
Citation:

混合层流场中涡结构对流速度的特性

郭广明, 刘洪, 张斌, 张忠阳, 张庆兵

Characteristics of convective speeds of vortex structures in mixing layer

Guo Guang-Ming, Liu Hong, Zhang Bin, Zhang Zhong-Yang, Zhang Qing-Bing
PDF
导出引用
  • 基于大涡模拟和光线追踪方法, 对光线穿越流场后的光程分布与混合层流场中涡结构之间的关系进行了分析, 提出了一种基于涡核位置提取的涡结构瞬时对流速度定量计算方法, 并使用直接几何测量数据进行了验证. 通过对不同尺寸的涡结构、涡-涡配对及融合过程中的涡结构和强压缩性流场中涡结构瞬时对流速度的定量数值计算, 揭示了混合层流场中涡结构对流速度的特性: 对单个涡结构而言, 其瞬时对流速度具有脉动特性, 且脉动幅度随涡结构尺寸和流场压缩性而变化; 在涡-涡配对及融合过程中, 涡对中各个涡结构的瞬时对流速度都表现出类似正弦波动的特点. 针对混合层流场中涡结构对流速度的特性, 给出了其背后的物理原因.
    Convective speed of a vortex structure in mixing layer is an important physical quantity for correcting aero-optics caused by the flowfield as a beam passes; however, knowledge about the dynamic characteristics of convective speed of a vortex structure in mixing layer is limited because the convective speed calculated from isentropic model, which is widely used at present, is a constant. Based on the large eddy simulation and ray tracing method, the optical path length (OPL) profile over the mixing layer flowfield as beams pass through the flowfield is calculated and compared with the instantaneous vorticity contours at the same time instant. The analysis of the relationship between the local minimum of OPL in the OPL profile and the position of vortex core shows that the point of the local minimum of OPL just corresponds to the center of the vortex core. Based on this corresponding relation, the position extraction of vortex core, which is a quantitative method of calculating the instantaneous convective speed of a vortex structures in mixing layer, is proposed and validated with the data obtained from direct geometry measurement. Using this quantitative method, the instantaneous convective speeds of vortex structures with different sizes, two vortexes in the process of vortex pairing and merging, and vortex structures in the strongly compressive flowfield are calculated quantitatively and analyzed. Our quantitative results clearly present the characteristics of convective speed of vortex structures in mixing layer as follows. 1) The instantaneous convective velocity of a single vortex structure in the mixing layer flowfield varies with time, that is the fluctuation characteristics, and the fluctuation amplitude also varies with the size of a vortex structure and the compressibility of the flowfield. Specifically, the amplitude is proportional to the size of a vortex and the compressibility of the flowfield. 2) In the process of vortex pairing and merging, the variation ranges of instantaneous convective speeds of the two vortex structures are large. Specifically, the maximum value of instantaneous convective speed is close to the speed of the high-speed layer and the minimum value of instantaneous convective speed is close to the speed of the low-speed layer, and the profile of instantaneous convective speed of each vortex structure in this process approximately shows a shape of sinusoidal curve. 3) The mean value of instantaneous convective speed of a vortex structure in mixing layer is not consistent with the theoretical convective speed of vortex structure, which is calculated from the isentropic model, and the deviation between instantaneous convective speed and theoretical convective speed varies with the size of a vortex structure and the compressibility of the flowfield. In addition, the physical reasons for explaining the characteristics of instantaneous convective speed of the vortex structures in mixing layer are also presented.
      通信作者: 郭广明, guoming20071028@163.com
    • 基金项目: 国家安全重大基础研究计划(批准号: 613276)和国家自然科学基金重点项目(批准号: 91330203)资助的课题.
      Corresponding author: Guo Guang-Ming, guoming20071028@163.com
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 613276) and the Key Program of the National Natural Science Foundation of China (Grant No. 91330203).
    [1]

    Yin X L 2003 Principle of Aero-Optics (Beijing: China Astronautics Press) p2 (in Chinese) [殷兴良 2003 气动光学原理 (北京: 中国宇航出版社) 第2页]

    [2]

    Rogers M M, Moser R D 1992 J. Fluid Mech. 243 183

    [3]

    Mungal M G, Hermanson J C, Dimotakis P E 1985 AIAA J. 23 1418

    [4]

    Monkewitz P A, Huerre P 1982 Phys. Fluids 25 1137

    [5]

    Brown G L, Roshko A 1974 J. Fluid Mech. 64 775

    [6]

    Winant C D, Browand F K 1974 J. Fluid Mech. 63 237

    [7]

    Zhu Y Z, Yi S H, Kong X P, He L 2015 Acta Phys. Sin. 64 064701 (in Chinese) [朱杨柱, 易仕和, 孔小平, 何霖 2015 64 064701]

    [8]

    Gan C J, Li L, Ma H D, Xiong H L 2014 Acta Phys. Sin. 63 054703 (in Chinese) [甘才俊, 李烺, 马汉东, 熊红亮 2014 63 054703]

    [9]

    Gan C J, Li L, Ma H D, Xiong H L 2013 Acta Phys. Sin. 62 184701 (in Chinese) [甘才俊, 李烺, 马汉东, 熊红亮 2013 62 184701]

    [10]

    Dimotaksi P, Catrakis H 2001 J. Fluid Mech. 433 105

    [11]

    Xie W K, Ma H T, Gao Q, Jiang W J 2014 Laser Optoelectron. Prog. 51 090001 (in Chinese) [谢文科, 马浩统, 高穹, 江文杰 2014 激光与光电子学进展 51 090001]

    [12]

    Jumper E J, Ronald J H 1995 AIAA J. 33 2151

    [13]

    Hugo R J, Jumper E J 1997 AIAA J. 35 671

    [14]

    Bogdanoff D W 1983 AIAA J. 21 926

    [15]

    Papamoschou D, Roshko A 1988 J. Fluid Mech. 197 453

    [16]

    Thurow B S, Naibo Jiang, Kim J H, Lempert W, Samimy M 2008 Phys. Fluids 20 066101

    [17]

    Goebel S G, Dutton J C 1991 AIAA J. 29 538

    [18]

    Ren W, Liu H 2012 Proceedings of the 42nd AIAA Fluid Dynamics Conference and Exhibit 2012 New Orleans, USA, June 25, 2012 p1

    [19]

    Wang M Mani A, Gordeyev S 2012 Annu. Rev. Fluid Mech. 44 299

    [20]

    Dimotakis P E, Catrakis H J, Fourgrette D L 2001 J. Fluid Mech. 433 105

    [21]

    Catrakis H J, Aguirre R C, Ruiz-Plancarte J 2002 J. Fluid Mech. 462 245

    [22]

    Aguirre R C, Catrakis H J 2004 AIAA J. 42 1973

    [23]

    Papamoschou D 1991 AIAA J. 29 680

  • [1]

    Yin X L 2003 Principle of Aero-Optics (Beijing: China Astronautics Press) p2 (in Chinese) [殷兴良 2003 气动光学原理 (北京: 中国宇航出版社) 第2页]

    [2]

    Rogers M M, Moser R D 1992 J. Fluid Mech. 243 183

    [3]

    Mungal M G, Hermanson J C, Dimotakis P E 1985 AIAA J. 23 1418

    [4]

    Monkewitz P A, Huerre P 1982 Phys. Fluids 25 1137

    [5]

    Brown G L, Roshko A 1974 J. Fluid Mech. 64 775

    [6]

    Winant C D, Browand F K 1974 J. Fluid Mech. 63 237

    [7]

    Zhu Y Z, Yi S H, Kong X P, He L 2015 Acta Phys. Sin. 64 064701 (in Chinese) [朱杨柱, 易仕和, 孔小平, 何霖 2015 64 064701]

    [8]

    Gan C J, Li L, Ma H D, Xiong H L 2014 Acta Phys. Sin. 63 054703 (in Chinese) [甘才俊, 李烺, 马汉东, 熊红亮 2014 63 054703]

    [9]

    Gan C J, Li L, Ma H D, Xiong H L 2013 Acta Phys. Sin. 62 184701 (in Chinese) [甘才俊, 李烺, 马汉东, 熊红亮 2013 62 184701]

    [10]

    Dimotaksi P, Catrakis H 2001 J. Fluid Mech. 433 105

    [11]

    Xie W K, Ma H T, Gao Q, Jiang W J 2014 Laser Optoelectron. Prog. 51 090001 (in Chinese) [谢文科, 马浩统, 高穹, 江文杰 2014 激光与光电子学进展 51 090001]

    [12]

    Jumper E J, Ronald J H 1995 AIAA J. 33 2151

    [13]

    Hugo R J, Jumper E J 1997 AIAA J. 35 671

    [14]

    Bogdanoff D W 1983 AIAA J. 21 926

    [15]

    Papamoschou D, Roshko A 1988 J. Fluid Mech. 197 453

    [16]

    Thurow B S, Naibo Jiang, Kim J H, Lempert W, Samimy M 2008 Phys. Fluids 20 066101

    [17]

    Goebel S G, Dutton J C 1991 AIAA J. 29 538

    [18]

    Ren W, Liu H 2012 Proceedings of the 42nd AIAA Fluid Dynamics Conference and Exhibit 2012 New Orleans, USA, June 25, 2012 p1

    [19]

    Wang M Mani A, Gordeyev S 2012 Annu. Rev. Fluid Mech. 44 299

    [20]

    Dimotakis P E, Catrakis H J, Fourgrette D L 2001 J. Fluid Mech. 433 105

    [21]

    Catrakis H J, Aguirre R C, Ruiz-Plancarte J 2002 J. Fluid Mech. 462 245

    [22]

    Aguirre R C, Catrakis H J 2004 AIAA J. 42 1973

    [23]

    Papamoschou D 1991 AIAA J. 29 680

  • [1] 张震, 易仕和, 刘小林, 陈世康, 张臻. 高超声速条件下凸曲率壁面混合层的流动演化.  , 2024, 73(10): 104701. doi: 10.7498/aps.73.20240128
    [2] 贺啸秋, 熊永亮, 彭泽瑞, 徐顺. 旋转肥皂泡热对流能量耗散与边界层特性的数值模拟.  , 2022, 71(20): 204701. doi: 10.7498/aps.71.20220693
    [3] 董帅, 纪祥勇, 李春曦. 横向磁场作用下Taylor-Couette湍流流动的大涡模拟.  , 2021, 70(18): 184702. doi: 10.7498/aps.70.20210389
    [4] 雒亮, 夏辉, 刘俊圣, 费家乐, 谢文科. 基于元胞自动机的气动光学光线追迹算法.  , 2020, 69(19): 194201. doi: 10.7498/aps.69.20200532
    [5] 郭广明, 朱林, 邢博阳. 超声速混合层涡结构内部流体的密度分布特性.  , 2020, 69(14): 144701. doi: 10.7498/aps.69.20200255
    [6] 葛明明, 王圣业, 王光学, 邓小刚. 基于混合雷诺平均/高精度隐式大涡模拟方法的高升力体气动噪声模拟.  , 2019, 68(20): 204702. doi: 10.7498/aps.68.20190777
    [7] 谢文科, 刘俊圣, 费家乐, 周全, 夏辉, 陈欣, 张盼, 彭一鸣, 于涛. 权重函数对关联方程估计超声速混合层波前方差精度的影响.  , 2019, 68(9): 094202. doi: 10.7498/aps.68.20182269
    [8] 郭广明, 刘洪, 张斌, 张庆兵. 脉冲激励下超音速混合层涡结构的演化机理.  , 2017, 66(8): 084701. doi: 10.7498/aps.66.084701
    [9] 丁浩林, 易仕和, 朱杨柱, 赵鑫海, 何霖. 不同光线入射角度下超声速湍流边界层气动光学效应的实验研究.  , 2017, 66(24): 244201. doi: 10.7498/aps.66.244201
    [10] 齐聪, 何光艳, 李意民, 何玉荣. 方腔内Cu/Al2O3水混合纳米流体自然对流的格子Boltzmann模拟.  , 2015, 64(2): 024703. doi: 10.7498/aps.64.024703
    [11] 张天天, 易仕和, 朱杨柱, 何霖. 基于背景纹影波前传感技术的气动光学波前重构与校正.  , 2015, 64(8): 084201. doi: 10.7498/aps.64.084201
    [12] 甘才俊, 李烺, 马汉东, 熊红亮. 可压缩混合层光学传输效应理论分析与实验研究.  , 2014, 63(5): 054703. doi: 10.7498/aps.63.054703
    [13] 包芸, 宁浩, 徐炜. 湍流热对流大尺度环流反转时的角涡特性.  , 2014, 63(15): 154703. doi: 10.7498/aps.63.154703
    [14] 屠功毅, 李伟锋, 黄国峰, 王辅臣. 平面撞击流偏斜振荡的实验研究与大涡模拟.  , 2013, 62(8): 084704. doi: 10.7498/aps.62.084704
    [15] 朱杨柱, 易仕和, 陈植, 葛勇, 王小虎, 付佳. 带喷流超声速光学头罩流场气动光学畸变试验研究.  , 2013, 62(8): 084219. doi: 10.7498/aps.62.084219
    [16] 彭京思, 彭虎. 一种适用于超声多普勒血流速度测量的混沌调频连续波的研究.  , 2012, 61(24): 248701. doi: 10.7498/aps.61.248701
    [17] 姚天亮, 刘海峰, 许建良, 李伟锋. 空气湍射流速度时间序列的最大Lyapunov指数以及湍流脉动.  , 2012, 61(23): 234704. doi: 10.7498/aps.61.234704
    [18] 王辉赞, 张韧. 基于Argo资料和混合层模式的淡水通量产品重构.  , 2012, 61(3): 039202. doi: 10.7498/aps.61.039202
    [19] 陈玉娟, 陈长乐. 相场法模拟对流速度对上游枝晶生长的影响.  , 2008, 57(7): 4585-4589. doi: 10.7498/aps.57.4585
    [20] 戴建华, 张洪钧, 王鹏业, 金朝鼎. 液晶混合光学双稳态的分叉图.  , 1985, 34(8): 992-999. doi: 10.7498/aps.34.992
计量
  • 文章访问数:  7607
  • PDF下载量:  247
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-30
  • 修回日期:  2016-01-11
  • 刊出日期:  2016-04-05

/

返回文章
返回
Baidu
map