搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Argo资料和混合层模式的淡水通量产品重构

王辉赞 张韧

引用本文:
Citation:

基于Argo资料和混合层模式的淡水通量产品重构

王辉赞, 张韧

Freshwater flux product reconstruction based on Argo data and mixed layer model

Wang Hui-Zan, Zhang Ren
PDF
导出引用
  • 海表淡水通量对于了解和模拟海洋大气过程具有重要作用,然而不同淡水通量的定量估计差别较大.基于混合层盐度平衡模式,利用Argo资料和OSCAR(海洋表面流实时分析场)流场相结合重构了20022008年逐周海表淡水通量产品.通过将重构产品与其他卫星产品和TAO(热带大气海洋观测网)观测进行对比分析表明,重构的淡水通量产品不仅能抓住其季节性信号,而且能够体现淡水通量的高频特征.该逐周淡水通量产品对海洋气候变化研究具有重要作用.
    Sea surface freshwater flux(FWF, evaporation minus precipitation) plays an important role in understanding and modeling atmosphere and ocean processes, but there exists strong disagreement different freshwater flux estimates. In this study, a weekly sea surface FWF product is reconstructed for the period from 2002 through 2008 based on the mixed layer salinity balance model for the first time, by combining the Argo data with OSCAR current data. Compared with the other precipitation and evaporation data from satellite product and TAO observations, the reconstructed FWF can capture not only the seasonal cycle of freshwater flux, but also some high-frequency features of freshwater flux. The FWF product provides a useful tool for studying the climate variation over the ocean.
    • 基金项目: 中加国际科技合作(批准号: 2008DFA22230)、国家重点基础研究发展计划(批准号: 2007CB816005)和国家自然科学基金(批准号: 40730843)资助的课题.
    • Funds: Project supported by the International Corporation Program(Grant No. 2008DFA22230), the National Basic Research Program(Grant No.2007CB816005), the National Natural Science Foundation of China(Grant No. 40730843), and the Doctoral(Postdoctoral) Scientific ResearchStarting Foundation of Institute of Meteorology, PLA University of Science and Technology, China.
    [1]

    Huang R X 2009 Ocean Circulation Wnd-Driven and Thermoha-Line Processes(1st Ed.)(New York: Cambridge University Press)

    [2]

    Schmitt R W 2008 Oceanography 21 12

    [3]

    Romanova V, Köhl A, Stammer D, Klepp C, Andersson A, BakanS 2010 Tellus A 62 435

    [4]

    Béranger K, Barnier B, Gulev S, Crépon M 2006 Ocean Dyn. 56104

    [5]

    CLIVAR Salinity Working Group 2008 Oceanography 21 82

    [6]

    Andersson A, Bakan S, Fennig K, Graβl H, Klepp C, Schulz J 2007Electronic Publication World Data Center for Climate

    [7]

    Andersson A 2009 Ph. D. Dissertation(Hamburg: UniverstätHamburg)

    [8]

    Adler R F, Huffman G J, Chang A, Ferraro R, Xie P, Janowiak J,Rudolf B, Schneider U, Curtis S, Bolvin D, Gruber A, Susskind J,Arkin P 2003 J. Hydrometeor. 4 1147

    [9]

    Xie P, Arkin P 1997 Bull. Am. Meteorol. Soc. 78 2539

    [10]

    Kanamitsu M, Ebisuzaki W, Woollen J, Yang S K, Hnilo J J, FiorinoM, Potter G L 2002 Bull. Am. Meteorol. Soc. 83 1631

    [11]

    Simmons A, Uppala S, Dee D, Kobayashi S 2007 ECMWFNewslett. 110 25

    [12]

    Zhou T 2003 Progress in Natural Science 13 626

    [13]

    Cronin M, McPhaden M 1998 J. Geophys. Res. 103 27567

    [14]

    Mignot J, Frankignoul C 2003 Climate Dyn. 20 555

    [15]

    Wang H Z, Zhang R, An Y Z, Chen Y D 2011 Marine Sci. Bull.30 127(in Chinese)[ 王辉赞,张韧, 安玉柱, 陈奕德 2011 海洋报 30 127]

    [16]

    Foltz G R, McPhaden M J 2008 J. Geophys. Res. 113 C02013

    [17]

    de Boyer Montégut C, Madec G, Fischer A S, Lazar A, IudiconeD 2004 J. Geophys. Res. 109 C12003

    [18]

    Kara A B, Rochford P A, Hurlburt H E 2000 J. Geophys. Res. 10516803

    [19]

    Kara A B, Rochford P A, Hurlburt H E 2003 J. Geophys. Res. 1083079

    [20]

    Foltz G R, Grodsky S A, Carton J A, McPhaden M J 2004 J. Geophys.Res. 109 C03052

    [21]

    Michel S, Chapron B, Tournadre J, Reul N 2007 Ocean Sci. Discuss4 41

    [22]

    Cui H, Zhang S W, Wang Q Y 2009 Acta Phys. Sin. 58 6509(inChinese)[崔红, 张书文, 王庆业 2009 58 6509]

    [23]

    Zhang SW, Cao R X, Zhu F Q 2011 Acta Phys. Sin. 60 119201(inChinese)[张书文, 曹瑞雪, 朱风芹 2011 60 119201]

    [24]

    Mignot J, Frankignoul C 2004 J. Geophys. Res. 109 C04005

    [25]

    Delcroix T, Cravatte S, McPhaden M J 2007 J. Geophys. Res. 112C03012

    [26]

    Zhang R H, Busalacchi A J, Murtugudde R G, Arkin P A,Ballabrera-Poy J 2006 Geophys. Res. Lett. 33 L02605

    [27]

    Miller J 1976 J. Phys. Oceanogr. 6 29

    [28]

    Stevenson J W, Niiler P P 1983 J. Phys. Oceanogr. 13 1894

    [29]

    Moisan J R, Niiler P P 1998 J. Phys. Oceanogr. 28 401

    [30]

    Romanova V, Kohl A, Stammer D, Klepp C, Andersson A, BakanS 2010 Tellus A 1

    [31]

    Torrence C, Cpmpo G P 1998 Bull. Am. Meteorol. Soc. 79 61

  • [1]

    Huang R X 2009 Ocean Circulation Wnd-Driven and Thermoha-Line Processes(1st Ed.)(New York: Cambridge University Press)

    [2]

    Schmitt R W 2008 Oceanography 21 12

    [3]

    Romanova V, Köhl A, Stammer D, Klepp C, Andersson A, BakanS 2010 Tellus A 62 435

    [4]

    Béranger K, Barnier B, Gulev S, Crépon M 2006 Ocean Dyn. 56104

    [5]

    CLIVAR Salinity Working Group 2008 Oceanography 21 82

    [6]

    Andersson A, Bakan S, Fennig K, Graβl H, Klepp C, Schulz J 2007Electronic Publication World Data Center for Climate

    [7]

    Andersson A 2009 Ph. D. Dissertation(Hamburg: UniverstätHamburg)

    [8]

    Adler R F, Huffman G J, Chang A, Ferraro R, Xie P, Janowiak J,Rudolf B, Schneider U, Curtis S, Bolvin D, Gruber A, Susskind J,Arkin P 2003 J. Hydrometeor. 4 1147

    [9]

    Xie P, Arkin P 1997 Bull. Am. Meteorol. Soc. 78 2539

    [10]

    Kanamitsu M, Ebisuzaki W, Woollen J, Yang S K, Hnilo J J, FiorinoM, Potter G L 2002 Bull. Am. Meteorol. Soc. 83 1631

    [11]

    Simmons A, Uppala S, Dee D, Kobayashi S 2007 ECMWFNewslett. 110 25

    [12]

    Zhou T 2003 Progress in Natural Science 13 626

    [13]

    Cronin M, McPhaden M 1998 J. Geophys. Res. 103 27567

    [14]

    Mignot J, Frankignoul C 2003 Climate Dyn. 20 555

    [15]

    Wang H Z, Zhang R, An Y Z, Chen Y D 2011 Marine Sci. Bull.30 127(in Chinese)[ 王辉赞,张韧, 安玉柱, 陈奕德 2011 海洋报 30 127]

    [16]

    Foltz G R, McPhaden M J 2008 J. Geophys. Res. 113 C02013

    [17]

    de Boyer Montégut C, Madec G, Fischer A S, Lazar A, IudiconeD 2004 J. Geophys. Res. 109 C12003

    [18]

    Kara A B, Rochford P A, Hurlburt H E 2000 J. Geophys. Res. 10516803

    [19]

    Kara A B, Rochford P A, Hurlburt H E 2003 J. Geophys. Res. 1083079

    [20]

    Foltz G R, Grodsky S A, Carton J A, McPhaden M J 2004 J. Geophys.Res. 109 C03052

    [21]

    Michel S, Chapron B, Tournadre J, Reul N 2007 Ocean Sci. Discuss4 41

    [22]

    Cui H, Zhang S W, Wang Q Y 2009 Acta Phys. Sin. 58 6509(inChinese)[崔红, 张书文, 王庆业 2009 58 6509]

    [23]

    Zhang SW, Cao R X, Zhu F Q 2011 Acta Phys. Sin. 60 119201(inChinese)[张书文, 曹瑞雪, 朱风芹 2011 60 119201]

    [24]

    Mignot J, Frankignoul C 2004 J. Geophys. Res. 109 C04005

    [25]

    Delcroix T, Cravatte S, McPhaden M J 2007 J. Geophys. Res. 112C03012

    [26]

    Zhang R H, Busalacchi A J, Murtugudde R G, Arkin P A,Ballabrera-Poy J 2006 Geophys. Res. Lett. 33 L02605

    [27]

    Miller J 1976 J. Phys. Oceanogr. 6 29

    [28]

    Stevenson J W, Niiler P P 1983 J. Phys. Oceanogr. 13 1894

    [29]

    Moisan J R, Niiler P P 1998 J. Phys. Oceanogr. 28 401

    [30]

    Romanova V, Kohl A, Stammer D, Klepp C, Andersson A, BakanS 2010 Tellus A 1

    [31]

    Torrence C, Cpmpo G P 1998 Bull. Am. Meteorol. Soc. 79 61

  • [1] 谢科薇, 陶金成, 董裕力, 翁雨燕, 杨俊义, 方亮. 二元混合物在液体层上发生马兰戈尼爆裂的研究.  , 2024, 73(7): 074702. doi: 10.7498/aps.73.20231364
    [2] 张震, 易仕和, 刘小林, 陈世康, 张臻. 高超声速条件下凸曲率壁面混合层的流动演化.  , 2024, 73(10): 104701. doi: 10.7498/aps.73.20240128
    [3] 赵文静, 丁梦光, 杨晓丽, 胡海云. 栅氧化层经时击穿的非平衡统计理论分析方法.  , 2020, 69(10): 100502. doi: 10.7498/aps.69.20200108
    [4] 郭广明, 朱林, 邢博阳. 超声速混合层涡结构内部流体的密度分布特性.  , 2020, 69(14): 144701. doi: 10.7498/aps.69.20200255
    [5] 张荣培, 王迪, 蔚喜军, 温学兵. 基于广义交替数值通量的局部间断Galerkin方法求解二维波动方程.  , 2020, 69(2): 020202. doi: 10.7498/aps.69.20190613
    [6] 王鹏, 沈赤兵. 等离子体合成射流对超声速混合层的混合增强.  , 2019, 68(17): 174701. doi: 10.7498/aps.68.20190683
    [7] 谢文科, 刘俊圣, 费家乐, 周全, 夏辉, 陈欣, 张盼, 彭一鸣, 于涛. 权重函数对关联方程估计超声速混合层波前方差精度的影响.  , 2019, 68(9): 094202. doi: 10.7498/aps.68.20182269
    [8] 郭广明, 刘洪, 张斌, 张庆兵. 脉冲激励下超音速混合层涡结构的演化机理.  , 2017, 66(8): 084701. doi: 10.7498/aps.66.084701
    [9] 郭广明, 刘洪, 张斌, 张忠阳, 张庆兵. 混合层流场中涡结构对流速度的特性.  , 2016, 65(7): 074702. doi: 10.7498/aps.65.074702
    [10] 冯红丽, 苟成玲, 俞坚钢, 韩文佳, 陈哲, 蔡亚南, 朱开贵. 离子镀制备Cr/W混合过渡层的氢氘辐照效应研究.  , 2015, 64(2): 026101. doi: 10.7498/aps.64.026101
    [11] 周洪强, 于明, 孙海权, 何安民, 陈大伟, 张凤国, 王裴, 邵建立. 混合物状态方程的计算.  , 2015, 64(6): 064702. doi: 10.7498/aps.64.064702
    [12] 甘才俊, 李烺, 马汉东, 熊红亮. 可压缩混合层光学传输效应理论分析与实验研究.  , 2014, 63(5): 054703. doi: 10.7498/aps.63.054703
    [13] 赵巧华, 孙绩华. 夏秋两季洱海、太湖表层混合层的深度变化特征及其机理分析.  , 2013, 62(3): 039203. doi: 10.7498/aps.62.039203
    [14] 周世平, 徐克西, 牛金海, 瞿 海. 混合配对态波函数方程的解.  , 1999, 48(2): 342-351. doi: 10.7498/aps.48.342
    [15] 吴小玲, 都有为. 淡水趋磁球菌的研究.  , 1999, 48(13): 304-308. doi: 10.7498/aps.48.304
    [16] 范恩贵, 张鸿庆. 非线性孤子方程的齐次平衡法.  , 1998, 47(3): 353-362. doi: 10.7498/aps.47.353
    [17] 刘文宏, 朱德彰, 王震遐, 柳襄怀. Ni/Ti双金属层的离子束混合与固态反应.  , 1990, 39(7): 101-105. doi: 10.7498/aps.39.101-2
    [18] 丁鄂江, 黄祖洽. Boltzmann方程的奇异扰动解法(Ⅲ)——边界层解.  , 1985, 34(2): 213-224. doi: 10.7498/aps.34.213
    [19] 李占柄, 严士健, 刘若庄. 非平衡系统Master方程的稳定性.  , 1981, 30(4): 448-458. doi: 10.7498/aps.30.448
    [20] 严士健, 李占柄. 非平衡系统的概率模型及Master方程的建立.  , 1980, 29(2): 139-152. doi: 10.7498/aps.29.139
计量
  • 文章访问数:  6493
  • PDF下载量:  382
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-12-06
  • 修回日期:  2011-05-30
  • 刊出日期:  2012-03-15

/

返回文章
返回
Baidu
map