搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单环多段光强分布检测光学涡旋拓扑荷值

张昊 常琛亮 夏军

引用本文:
Citation:

单环多段光强分布检测光学涡旋拓扑荷值

张昊, 常琛亮, 夏军

Detection optical vortex topological charges with monocyclic multistage intensity distribution

Zhang Hao, Chang Chen-Liang, Xia Jun
PDF
导出引用
  • 针对涡旋光束检测范围局限这一问题, 提出了一种新的光学涡旋拓扑荷值检测方法-单环多段光强分布检测法, 它以分段数和环半径为两大检测常数, 将检测涡旋光束拓扑荷值范围扩大到了128种, 与以往利用旁瓣调控光学涡旋检测拓扑荷值方法相比, 检测范围扩大了1个数量级. 单环多段光强分布是基于计算机全息图实现在远场衍射焦平面上环半径相等的两束携带不同拓扑荷数的涡旋光束叠加后形成的光强分布. 计算机模拟和光学实验验证了所提出方法的可行性, 该方法在自由空间光通信领域具有一定的研究价值和应用潜力.
    Generation and application of the vortex beams are part of the hot topics in the optical field. In connection with the limited detection range of topological charge, we introduce a novel monocyclic multistage intensity distribution, which is generated by the coaxial superposition of two vortex beams with different topological charge numbers which have the same radius of ring in the focal plane of fraunhofer diffraction. This novel intensity distribution which is achieved by computer generated hologram is a new application of sidelobe-modulated optical vortices. The detection range of topological charge is expanded to 128 by two detection constants consisting of segments and radius in the monocyclic multistage intensity distribution method. We study the generation and distribution characteristics of monocyclic multistage intensity distribution in the focal plane of fraunhofer diffraction theoretically and experimentally to generate the qualified monocyclic multistage intensity distribution using a spatial light modulator. Excellent agreement between theoretical and experimental results is observed. The study indicates that two orbital angular momenta of vortex beams can be accurately determined by the segments and radius determined in the monocyclic multistage intensity distribution method. The method is immune to harassments from alignment and phase matching between the beams and optical elements, and has a large detection range, which is enlarged one order of magnitude compared with the previous way of detecting topological charges with sidelobe-modulated optical vortices. Our method provides a more large detection range of topological charge, which enables the vortex beams as the information carriers to carry more data in communication. Therefore, this method possesses research potential and applicability in future free-space optical communication.
      通信作者: 夏军, xiajun@seu.edu.cn
      Corresponding author: Xia Jun, xiajun@seu.edu.cn
    [1]

    Curtis J E, Grier D G 2003 Phys. Rev. Lett. 90 133901

    [2]

    Swartlander G A 2001 Opt. Lett. 26 497

    [3]

    Gan X T, Zhang P, Liu S, Xiao F J, Zhao J L 2008 Chin. Phys. Lett. 25 3280

    [4]

    Ding P F, Pu J X 2012 Acta Phys. Sin. 61 174201 (in Chinese) [丁攀峰, 蒲继雄 2012 61 174201]

    [5]

    Fang G J, Sun S H, Pu J X 2012 Acta Phys. Sin. 61 064210 (in Chinese) [方桂娟, 孙顺红, 蒲继雄 2012 61 064210]

    [6]

    Gecevičius M, Drevinskas R, Beresna M, Kazansky P 2014 Appl. Phys. Lett. 104 231110

    [7]

    Chen C R, Yeh C H, Shih M F 2014 Opt. Express 22 3180

    [8]

    Dholakia K, Čžmr T 2011 Nature Photon. 5 335

    [9]

    Fickler R, Lapkiewicz R, Plick W N, Krenn M, Schaeff C, Ramelow S, Zeilinger A 2012 Science 338 640

    [10]

    Rodenburg B, Mirhosseini M, Malik M, Rodenburg B, Mirhosseini M, Malik M, Magaa-LoaizaO, Yanakas M, Maher L, Steinhoff N, Tyler G, Boyd R 2014 New J. Phys. 16 033020

    [11]

    Lehmuskero A, Li Y, Johansson P 2014 Opt. Express 22 434

    [12]

    Liu Y, Li H N, Hu Y, Du A 2014 Chin. Phys. B 23 087501

    [13]

    Zhou Z H, Guo Y K, Zhu L 2014 Chin. Phys. B 23 044201

    [14]

    Hickmann J M, Fonseca E J S, Soares W C, Chvez-Cerda S 2010 Phys. Rev. Lett. 105 053904

    [15]

    Ghai D P, Senthilkumaran P, Sirohi R S 2009 Opt. Lasers Eng. 47 123

    [16]

    Sztul H I, Alfano R R 2006 Opt. Lett. 31 999

    [17]

    Zhou H, Yan S, Dong J, Zhang X 2014 Opt. Lett. 39 3173

    [18]

    Guzzinati G, Clark L, Bch A, Verbeeck J 2014 Phys. Rev. A 89 025803

    [19]

    Saitoh K, Hasegawa Y, Hirakawa K, Tanaka N, Uchida M 2013 Phys. Rev. Lett. 111 074801

    [20]

    Xin J T, Gao C Q, Li C, Wang Z 2012 Acta Phys. Sin. 61 174202 (in Chinese) [辛景寿, 高春清, 李辰, 王铮 2012 61 174202]

    [21]

    Berkhout G C G, Lavery M P J, Courtial J, Beijersbergen M W, Padgett M J 2010 Phys. Rev. Lett. 105 153601

    [22]

    Lavery M P J, Berkhout G C G, Courtial J, Padgett M J 2011 J. Opt. 13 064006

    [23]

    Chen J, Kuang D F, Fang Z L 2009 Chin. Phys. Lett. 26 4210

    [24]

    Chen J, Zhao X, Fang Z L, Zhu S W, Yuan X C 2010 Opt. Lett. 35 1485

  • [1]

    Curtis J E, Grier D G 2003 Phys. Rev. Lett. 90 133901

    [2]

    Swartlander G A 2001 Opt. Lett. 26 497

    [3]

    Gan X T, Zhang P, Liu S, Xiao F J, Zhao J L 2008 Chin. Phys. Lett. 25 3280

    [4]

    Ding P F, Pu J X 2012 Acta Phys. Sin. 61 174201 (in Chinese) [丁攀峰, 蒲继雄 2012 61 174201]

    [5]

    Fang G J, Sun S H, Pu J X 2012 Acta Phys. Sin. 61 064210 (in Chinese) [方桂娟, 孙顺红, 蒲继雄 2012 61 064210]

    [6]

    Gecevičius M, Drevinskas R, Beresna M, Kazansky P 2014 Appl. Phys. Lett. 104 231110

    [7]

    Chen C R, Yeh C H, Shih M F 2014 Opt. Express 22 3180

    [8]

    Dholakia K, Čžmr T 2011 Nature Photon. 5 335

    [9]

    Fickler R, Lapkiewicz R, Plick W N, Krenn M, Schaeff C, Ramelow S, Zeilinger A 2012 Science 338 640

    [10]

    Rodenburg B, Mirhosseini M, Malik M, Rodenburg B, Mirhosseini M, Malik M, Magaa-LoaizaO, Yanakas M, Maher L, Steinhoff N, Tyler G, Boyd R 2014 New J. Phys. 16 033020

    [11]

    Lehmuskero A, Li Y, Johansson P 2014 Opt. Express 22 434

    [12]

    Liu Y, Li H N, Hu Y, Du A 2014 Chin. Phys. B 23 087501

    [13]

    Zhou Z H, Guo Y K, Zhu L 2014 Chin. Phys. B 23 044201

    [14]

    Hickmann J M, Fonseca E J S, Soares W C, Chvez-Cerda S 2010 Phys. Rev. Lett. 105 053904

    [15]

    Ghai D P, Senthilkumaran P, Sirohi R S 2009 Opt. Lasers Eng. 47 123

    [16]

    Sztul H I, Alfano R R 2006 Opt. Lett. 31 999

    [17]

    Zhou H, Yan S, Dong J, Zhang X 2014 Opt. Lett. 39 3173

    [18]

    Guzzinati G, Clark L, Bch A, Verbeeck J 2014 Phys. Rev. A 89 025803

    [19]

    Saitoh K, Hasegawa Y, Hirakawa K, Tanaka N, Uchida M 2013 Phys. Rev. Lett. 111 074801

    [20]

    Xin J T, Gao C Q, Li C, Wang Z 2012 Acta Phys. Sin. 61 174202 (in Chinese) [辛景寿, 高春清, 李辰, 王铮 2012 61 174202]

    [21]

    Berkhout G C G, Lavery M P J, Courtial J, Beijersbergen M W, Padgett M J 2010 Phys. Rev. Lett. 105 153601

    [22]

    Lavery M P J, Berkhout G C G, Courtial J, Padgett M J 2011 J. Opt. 13 064006

    [23]

    Chen J, Kuang D F, Fang Z L 2009 Chin. Phys. Lett. 26 4210

    [24]

    Chen J, Zhao X, Fang Z L, Zhu S W, Yuan X C 2010 Opt. Lett. 35 1485

  • [1] 陈波, 刘进, 李俊韬, 王雪华. 轨道角动量量子光源的集成化研究.  , 2024, 73(16): 164204. doi: 10.7498/aps.73.20240791
    [2] 陆万利. 锥角调制的圆艾里涡旋光束构建光学针.  , 2024, 73(17): 174203. doi: 10.7498/aps.73.20240878
    [3] 贾谊成, 张福荣, 张景风, 孔令军, 张向东. 三维空间轨道角动量全息.  , 2024, 73(9): 094202. doi: 10.7498/aps.73.20231822
    [4] 徐梦敏, 李晓庆, 唐荣, 季小玲. 风控热晕对双模涡旋光束大气传输的轨道角动量和相位奇异性的影响.  , 2023, 72(16): 164202. doi: 10.7498/aps.72.20230684
    [5] 刘瑞熙, 马磊. 海洋湍流对光子轨道角动量量子通信的影响.  , 2022, 71(1): 010304. doi: 10.7498/aps.71.20211146
    [6] 高喜, 唐李光. 基于双层超表面的宽带、高效透射型轨道角动量发生器.  , 2021, 70(3): 038101. doi: 10.7498/aps.70.20200975
    [7] 蒋基恒, 余世星, 寇娜, 丁召, 张正平. 基于平面相控阵的轨道角动量涡旋电磁波扫描特性.  , 2021, 70(23): 238401. doi: 10.7498/aps.70.20211119
    [8] 崔粲, 王智, 李强, 吴重庆, 王健. 长周期多芯手征光纤轨道角动量的调制.  , 2019, 68(6): 064211. doi: 10.7498/aps.68.20182036
    [9] 付时尧, 高春清. 利用衍射光栅探测涡旋光束轨道角动量态的研究进展.  , 2018, 67(3): 034201. doi: 10.7498/aps.67.20171899
    [10] 解万财, 黄素娟, 邵蔚, 朱福全, 陈木生. 基于混合光模式阵列的自由空间编码通信.  , 2017, 66(14): 144102. doi: 10.7498/aps.66.144102
    [11] 范榕华, 郭邦红, 郭建军, 张程贤, 张文杰, 杜戈. 基于轨道角动量的多自由度W态纠缠系统.  , 2015, 64(14): 140301. doi: 10.7498/aps.64.140301
    [12] 柯熙政, 谌娟, 杨一明. 在大气湍流斜程传输中拉盖高斯光束的轨道角动量的研究.  , 2014, 63(15): 150301. doi: 10.7498/aps.63.150301
    [13] 黄素娟, 谷婷婷, 缪庄, 贺超, 王廷云. 多环涡旋光束的实验研究.  , 2014, 63(24): 244103. doi: 10.7498/aps.63.244103
    [14] 李铁, 谌娟, 柯熙政, 吕宏. 大气信道中单光子轨道角动量纠缠特性的研究.  , 2012, 61(12): 124208. doi: 10.7498/aps.61.124208
    [15] 柯熙政, 卢宁, 杨秦岭. 单光子轨道角动量的传输特性研究.  , 2010, 59(9): 6159-6163. doi: 10.7498/aps.59.6159
    [16] 刘曼, 陈小艺, 李海霞, 宋洪胜, 滕树云, 程传福. 利用干涉光场的相位涡旋测量拉盖尔-高斯光束的轨道角动量.  , 2010, 59(12): 8490-8498. doi: 10.7498/aps.59.8490
    [17] 吕宏, 柯熙政. 具有轨道角动量光束入射下的单球粒子散射研究.  , 2009, 58(12): 8302-8308. doi: 10.7498/aps.58.8302
    [18] 苏志锟, 王发强, 路轶群, 金锐博, 梁瑞生, 刘颂豪. 基于光子轨道角动量的密码通信方案研究.  , 2008, 57(5): 3016-3021. doi: 10.7498/aps.57.3016
    [19] 高明伟, 高春清, 林志锋. 扭转对称光束的产生及其变换过程中的轨道角动量传递.  , 2007, 56(4): 2184-2190. doi: 10.7498/aps.56.2184
    [20] 高明伟, 高春清, 何晓燕, 李家泽, 魏光辉. 利用具有轨道角动量的光束实现微粒的旋转.  , 2004, 53(2): 413-417. doi: 10.7498/aps.53.413
计量
  • 文章访问数:  7085
  • PDF下载量:  229
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-30
  • 修回日期:  2015-11-23
  • 刊出日期:  2016-03-05

/

返回文章
返回
Baidu
map