搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型碳材料在钙钛矿太阳电池中的应用研究进展

王军霞 毕卓能 梁柱荣 徐雪青

引用本文:
Citation:

新型碳材料在钙钛矿太阳电池中的应用研究进展

王军霞, 毕卓能, 梁柱荣, 徐雪青

Progress of new carbon material research in perovskite solar cells

Wang Jun-Xia, Bi Zhuo-Neng, Liang Zhu-Rong, Xu Xue-Qing
PDF
导出引用
  • 新型碳材料如石墨烯及其氧化物、碳纳米管、富勒烯及石墨炔等因其优异的热学、力学、电学、光学性能成为了钙钛矿太阳电池研究的又一亮点. 本文总结了新型碳材料在钙钛矿太阳电池对电极、电子传输材料及空穴传输材料中的研究进展, 新型碳材料的引入有效地提高了钙钛矿电池的性能, 为下一步新型碳材料的应用开发以及钙钛矿电池器件的研究提供了新的思路.
    A photoelectric conversion efficiency of 3.8% was achieved based on organic-inorganic hybrid perovskites CH3NH3PbBr3 and CH3NH3PbI3 in 2009, and their efficiencies have leaped to 20.1% in the past five years, which are comparable to Cu(In,Ga) Se2 solar cells. The researchers mainly focused on appropriate materials and device structures, high-quality film depositions, careful interface designs and controllable carrier properties. Even so, it is still a long-term work to develop the low-priced, stable, environmental-friendly and highly-efficient perovskite solar cells, for example, the hole transport material spiro-OMeTAD is complicated and expensive, the electron transport material TiO2 must be processed by high temperature annealing and the Au electrode is extensively used, all of which are not conducible to the commercialized application. On this occasion, new carbon materials, such as graphene oxide, carbon nanotubes, fullerene, graphdiyne, etc. have become another highlight of perovskite solar cells due to their excellent thermal, mechanical, electrical and optical performances. Carbon materials are low-cost and highly available industrial materials, which have been applied to highly efficient counter electrodes for dye-sensitized solar cell and quantum dot-sensitized solar cells. The approximate 5.0 eV work function makes carbon material the ideal counter electrode material for perovskite solar cell. Carbon material is endowed with remarkably high charge mobility and electronic conductivity, which has been identified as one of the strongest materials for electron transport in perovskite solar cell. Similarly, a perovskite solar cell using hole transport materials incorporating carbon material shows an improved power conversion efficiency due to enhanced electrical conductivity and carrier mobility because the low electrical conductivity of hole transport material such as spiro-OMeTAD is considered to be an impediment to further enhancement of the power conversion efficiency and a hole transport material with higher conductivity should reduce the series resistance and increase the fill factor, thereby enhancing the power conversion efficiency of perovskite solar cell. In this paper, the research progress of new carbon materials for counter electrode, electron transport materials, hole transport materials in perovskite solar cells are summarized. The power efficiency of perovskite solar cell is enhanced greatly because of the introduction of new carbon materials, which provides a new idea for the further application of new carbon materials and device design of perovskite solar cells.
      通信作者: 王军霞, wangjx@ms.giec.ac.cn;xuxq@ms.giec.ac.cn ; 徐雪青, wangjx@ms.giec.ac.cn;xuxq@ms.giec.ac.cn
    • 基金项目: 广东省协同创新与平台环境建设项目(批准号: 2014A050503051)、江苏省能量转换材料与技术重点实验室开放课题基金(批准号: MTEC-2015M01)和广东省自然科学基金 (批准号: 2015A030310501) 资助的课题.
      Corresponding author: Wang Jun-Xia, wangjx@ms.giec.ac.cn;xuxq@ms.giec.ac.cn ; Xu Xue-Qing, wangjx@ms.giec.ac.cn;xuxq@ms.giec.ac.cn
    • Funds: Project supported by Project on the Collaborative Innovation and Environmental Construction Platform of Guangdong Province, China (Grant No. 2014A050503051), the Open Fund of Jiangsu Key Laboratory of Materials and Technology for Energy Conversion, China (Grant No. MTEC-2015 M01), and the Natural Science Foundation of Guangdong Province, China (Grant No. 2015A030310501).
    [1]

    Kojima A, Teshima K, Shirai Y, Tsutomu M 2009 J. Am. Chem. Soc. 131 6050

    [2]

    Zhou H P, Chen Q, Li G, Luo S, Song T B, Duan H S, Hong Z, You J, Liu Y 2014 Science 345 542

    [3]

    Green M A, Ho-Baillie A, Snaith H J 2014 Nat. Photon. 8 506

    [4]

    Mei A Y, Li X, Liu L F, Ku Z L, Liu T F, Rong Y G, Xu M, Hu M, Chen J Z, Yang Y, Grätzel M, Han H W 2014 Science 345 295

    [5]

    Liu T F, Liu L F, Hu M, Yang Y, Zhang L J, Mei A Y, Han H W 2015 J . Power Sources 293 533

    [6]

    Yang Y Y, Xiao J Y, Wei H Y, Zhu L F, Li D M, Luo Y H, Wu H J, Meng Q B 2014 RSC Adv. 4 52825

    [7]

    Wei H Y, Xiao J Y, Yang Y Y, Lv S T, Shi J J, Xu X, Dong J, Luo Y H, Li D M, Meng Q B 2015 Carbon 93 861

    [8]

    Li Z, Kulkarni S A, Boix P P, Shi E, Cao A, Fu K, Batabyal S K, Zhang J, Xiong Q, Wong L H, Mathews N, Mhaisalkar S G 2014 ACS Nano 8 6797

    [9]

    Zhou H W, Shi Y T, Wang K, Dong Q S, Bai X G, Xing Y J, Du Y, Ma T L 2015 J. Phys. Chem. C 119 4600

    [10]

    Wojciechowski K, Leijtens T, Siprova S, Schlueter C, Horantner M T, Wang J T W, Li C Z, Jen A K Y, Lee T L, Snaith H J 2015 J. Phys. Chem. Lett. 6 2399

    [11]

    Agnese A, Stranks S D, Docampo P, Yip H L, Jen A K Y, Snaith H J 2013 Nano Lett. 13 3124

    [12]

    Wang J T, Ball J M, Barea E M, Abate A, Alexander-Webber J A, Huang J, Saliba M, Mora-Sero I, Bisquert J, Snaith H J, Nicholas R J 2014 Nano Lett. 14 724

    [13]

    Kuang C Y, Tang G, Jiu T G, Yang H, Liu H B, Li B R, Luo W N, Li X D, Zhang W J, Lu F S, Fang J F, Li Y L 2015 Nano Lett. 15 2756

    [14]

    Li W Z, Dong H P, Guo X D, Li N, Li J W, Niu G D, Wang L D 2014 J. Mater. Chem. A 2 20105

    [15]

    Wu Z W, Bai S, Xiang J, Yuan Z C, Yang Y G, Cui W, Gao X Y, Liu Z, Jin Y Z, Sun B Q 2014 Nanoscale 6 10505

    [16]

    Xiao J Y, Shi J J, Liu H B, Xu Y Z, Lv S T, Luo Y H, Li D M, Meng Q B, Li Y L 2015 Adv. Energy Mater. 5 1401943

    [17]

    Chen H W, Pan X, Liu W Q, Cai M L, Kou D X, Huo Z P, Fang X Q, Dai S Y 2013 Chem. Commun. 49 7277

    [18]

    Lee J Y, Menamparambath M M, Hwang J Y, Baik S 2015 Chem. Sus. Chem. 8 2358

  • [1]

    Kojima A, Teshima K, Shirai Y, Tsutomu M 2009 J. Am. Chem. Soc. 131 6050

    [2]

    Zhou H P, Chen Q, Li G, Luo S, Song T B, Duan H S, Hong Z, You J, Liu Y 2014 Science 345 542

    [3]

    Green M A, Ho-Baillie A, Snaith H J 2014 Nat. Photon. 8 506

    [4]

    Mei A Y, Li X, Liu L F, Ku Z L, Liu T F, Rong Y G, Xu M, Hu M, Chen J Z, Yang Y, Grätzel M, Han H W 2014 Science 345 295

    [5]

    Liu T F, Liu L F, Hu M, Yang Y, Zhang L J, Mei A Y, Han H W 2015 J . Power Sources 293 533

    [6]

    Yang Y Y, Xiao J Y, Wei H Y, Zhu L F, Li D M, Luo Y H, Wu H J, Meng Q B 2014 RSC Adv. 4 52825

    [7]

    Wei H Y, Xiao J Y, Yang Y Y, Lv S T, Shi J J, Xu X, Dong J, Luo Y H, Li D M, Meng Q B 2015 Carbon 93 861

    [8]

    Li Z, Kulkarni S A, Boix P P, Shi E, Cao A, Fu K, Batabyal S K, Zhang J, Xiong Q, Wong L H, Mathews N, Mhaisalkar S G 2014 ACS Nano 8 6797

    [9]

    Zhou H W, Shi Y T, Wang K, Dong Q S, Bai X G, Xing Y J, Du Y, Ma T L 2015 J. Phys. Chem. C 119 4600

    [10]

    Wojciechowski K, Leijtens T, Siprova S, Schlueter C, Horantner M T, Wang J T W, Li C Z, Jen A K Y, Lee T L, Snaith H J 2015 J. Phys. Chem. Lett. 6 2399

    [11]

    Agnese A, Stranks S D, Docampo P, Yip H L, Jen A K Y, Snaith H J 2013 Nano Lett. 13 3124

    [12]

    Wang J T, Ball J M, Barea E M, Abate A, Alexander-Webber J A, Huang J, Saliba M, Mora-Sero I, Bisquert J, Snaith H J, Nicholas R J 2014 Nano Lett. 14 724

    [13]

    Kuang C Y, Tang G, Jiu T G, Yang H, Liu H B, Li B R, Luo W N, Li X D, Zhang W J, Lu F S, Fang J F, Li Y L 2015 Nano Lett. 15 2756

    [14]

    Li W Z, Dong H P, Guo X D, Li N, Li J W, Niu G D, Wang L D 2014 J. Mater. Chem. A 2 20105

    [15]

    Wu Z W, Bai S, Xiang J, Yuan Z C, Yang Y G, Cui W, Gao X Y, Liu Z, Jin Y Z, Sun B Q 2014 Nanoscale 6 10505

    [16]

    Xiao J Y, Shi J J, Liu H B, Xu Y Z, Lv S T, Luo Y H, Li D M, Meng Q B, Li Y L 2015 Adv. Energy Mater. 5 1401943

    [17]

    Chen H W, Pan X, Liu W Q, Cai M L, Kou D X, Huo Z P, Fang X Q, Dai S Y 2013 Chem. Commun. 49 7277

    [18]

    Lee J Y, Menamparambath M M, Hwang J Y, Baik S 2015 Chem. Sus. Chem. 8 2358

  • [1] 瞿子涵, 赵洋, 马飞, 游经碧. 原子层沉积金属氧化物缓冲层制备高性能大面积钙钛矿太阳电池.  , 2024, 73(9): 098802. doi: 10.7498/aps.73.20240218
    [2] 张喜生, 晏春愉, 胡李纳, 王景州, 姚陈忠. 低温溶液加工CsPbBr3纳晶薄膜制备钙钛矿太阳电池.  , 2024, 73(22): 228101. doi: 10.7498/aps.73.20241152
    [3] 韩帅, 郭秋卜, 陆雅翔, 陈立泉, 胡勇胜. 低温水系碱金属离子电池的研究进展.  , 2023, 72(7): 070702. doi: 10.7498/aps.72.20230024
    [4] 韩晓静, 杨静, 张佳莉, 刘冬雪, 石标, 王鹏阳, 赵颖, 张晓丹. 反应等离子体沉积二氧化锡电子传输层及其在钙钛矿太阳电池中的应用.  , 2023, 72(17): 178401. doi: 10.7498/aps.72.20230693
    [5] 蒋梅燕, 王平, 陈爱盛, 陈成克, 李晓, 鲁少华, 胡晓君. 纳米金刚石/竖立石墨烯复合三维电极的制备及电化学性能研究.  , 2022, 71(19): 198101. doi: 10.7498/aps.71.20220715
    [6] 韩梅斗雪, 王雅, 王荣波, 赵均陶, 任慧志, 侯国付, 赵颖, 张晓丹, 丁毅. 锂掺杂提高硫氰酸亚铜的电学特性及在钙钛矿太阳电池中的应用.  , 2022, 0(0): . doi: 10.7498/aps.7120221222
    [7] 韩梅斗雪, 王雅, 王荣波, 赵均陶, 任慧志, 侯国付, 赵颖, 张晓丹, 丁毅. 锂掺杂提高硫氰酸亚铜的电学特性及在钙钛矿太阳电池中的应用.  , 2022, 71(21): 217801. doi: 10.7498/aps.71.20221222
    [8] 李燕, 贺红, 党威武, 陈雪莲, 孙璨, 郑嘉璐. 钙钛矿太阳电池中各功能层的光辐照稳定性研究进展.  , 2021, 70(9): 098402. doi: 10.7498/aps.70.20201762
    [9] 卢辉东, 韩红静, 刘杰. 有机铅碘钙钛矿太阳电池结构优化及光电性能计算.  , 2021, 70(16): 168802. doi: 10.7498/aps.70.20210134
    [10] 徐婷, 王子帅, 李炫华, 沙威. 基于等效电路模型的钙钛矿太阳电池效率损失机理分析.  , 2021, 70(9): 098801. doi: 10.7498/aps.70.20201975
    [11] 卢辉东, 韩红静, 刘杰. FA1–xCsx PbI3–y Bry钙钛矿材料优化及太阳电池性能计算.  , 2021, 70(3): 036301. doi: 10.7498/aps.70.20201387
    [12] 邵光伟, 郭珊珊, 于瑞, 陈南梁, 叶美丹, 刘向阳. 可拉伸超级电容器的研究进展:电极、电解质和器件.  , 2020, 69(17): 178801. doi: 10.7498/aps.69.20200881
    [13] 陈永亮, 唐亚文, 陈沛润, 张力, 刘琪, 赵颖, 黄茜, 张晓丹. 钙钛矿太阳电池中的缓冲层研究进展.  , 2020, 69(13): 138401. doi: 10.7498/aps.69.20200543
    [14] 梁晓娟, 曹宇, 蔡宏琨, 苏健, 倪牮, 李娟, 张建军. 肖特基钙钛矿太阳电池结构设计与优化.  , 2020, 69(5): 057901. doi: 10.7498/aps.69.20191891
    [15] 吴步军, 林东旭, 李征, 程振平, 李新, 陈科, 时婷婷, 谢伟广, 刘彭义. 钙钛矿薄膜气相制备的晶粒尺寸优化及高效光伏转换.  , 2019, 68(7): 078801. doi: 10.7498/aps.68.20182221
    [16] 李海涛, 江亚晓, 涂丽敏, 李少华, 潘玲, 李文标, 杨仕娥, 陈永生. 退火温度对电子束蒸发沉积Cu2O薄膜性能的影响.  , 2018, 67(5): 053301. doi: 10.7498/aps.67.20172463
    [17] 李少华, 李海涛, 江亚晓, 涂丽敏, 李文标, 潘玲, 杨仕娥, 陈永生. 高效平面异质结有机-无机杂化钙钛矿太阳电池的质量管理.  , 2018, 67(15): 158801. doi: 10.7498/aps.67.20172600
    [18] 王福芝, 谭占鳌, 戴松元, 李永舫. 平面异质结有机-无机杂化钙钛矿太阳电池研究进展.  , 2015, 64(3): 038401. doi: 10.7498/aps.64.038401
    [19] 於黄忠, 温源鑫. 不同厚度的活性层及阴极的改变对聚合物太阳电池性能的影响.  , 2011, 60(3): 038401. doi: 10.7498/aps.60.038401
    [20] 许军, 黄宇健, 丁士进, 张卫. Ta和TaN底电极对原子层淀积HfO2介质MIM电性能的影响.  , 2009, 58(5): 3433-3436. doi: 10.7498/aps.58.3433
计量
  • 文章访问数:  9351
  • PDF下载量:  1377
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-10-27
  • 修回日期:  2015-12-02
  • 刊出日期:  2016-03-05

/

返回文章
返回
Baidu
map