-
以Se粉和MoO3粉为源材料, 利用热丝化学气相沉积在N2中制备了Se和MoSe2纳米片. 利用场发射扫描电子显微镜、透射电子显微镜、X射线能谱仪、显微Raman光谱仪和X射线光电子谱仪对Se和MoSe2纳米片结构和组成进行了系统研究. 结果表明: Se粉和MoO3粉的混合与否直接影响了Se和MoSe2纳米片的形成和结构; 当Se粉和MoO3粉充分混合时形成Se纳米片, 而Se和MoO3粉分开放置时则形成MoSe2纳米片. 研究发现这是由于Se和MoO3粉的混合与否使Se和MoO3在气相中的不同反应所致. 对Se和MoSe2 纳米片的发光性能研究表明, 它们分别产生了774, 783和784 nm的发光峰, 不同于单层MoSe2 纳米片的发光性能. 这些结果丰富了对二维Se基纳米材料的合成和光学性能的知识, 有助于对Se基二维纳米材料的光电器件的研制.
-
关键词:
- Se和MoSe2纳米片 /
- 化学气相沉积 /
- 发光
Se and MoSe2 nanoflakes are prepared in N2 environment by hot filament chemical vapor deposition through using Se and MoO3 powders as the source materials. The structures and compositions of Se and MoSe2 nanoflakes are systemically studied by using field emission scanning electron microscope, transmission electron microscope, energy dispersive X-ray spectroscope, micro-Raman spectroscope, and X-ray photoelectron spectroscope. The results indicate that the mixing of the Se and MoO3 powders directly affects the formations and structures of Se and MoSe2 nanoflakes. When the Se and MoO3 powders are fully mixed, the Se nanoflakes are formed, however the MoSe2 nanoflakes are formed under no mixture of Se and MoO3 powders. This is due to the fact that different reactions of Se and MoO3 powders in gas environment with or without mixing the Se and MoO3 powders are generated. The study of photoluminescence properties indicates that the photoluminescence peaks are generated at about 774, 783 nm and 783, 784 nm for the Se and MoSe2 nanoflakes, respectively, which are different from the photoluminescence properties of monolayer MoSe2 nanosheet. These outcomes can enrich our knowledge of the synthesis and optical properties of two-dimensional Se-based nanomaterials and will contribute to the development of optoelectronic devices of two-dimensional Se-based nanomaterials.[1] Vishwanath S, Liu X, Rouvimov S, CMende P, Azcatl A, McDonnell S, Wallace R M, Feenstra R M, Furdyna J K, Jena D, Xing H G 2015 2D Mater. 2 024007
[2] Lai Z P 2013 Acta Phys. Sin. 62 056801 (in Chinese) [赖占平 2013 62 056801]
[3] Ostrikov K, Neyts E C, Meyyappan M 2013 Adv. Phys. 62 113
[4] Xie L Y, Xiao W B, Huang G Q, Hu A R, Liu J T 2014 Acta Phys. Sin. 63 057803 (in Chinese) [谢凌云, 肖文波, 黄国庆, 胡爱荣, 刘江涛 2014 63 057803]
[5] Nourbakhsh A, Cantoro M, Vosch T, Pourtois G, Clemente F, van der Veen M H, Hofkens J, Heyns M M, Gendt S D, Sels B F 2010 Nanotechnology 21 435203
[6] Xia J, Huang X, Liu L Z, Wang M, Wang L, Huang B, Zhu D D, Li J J, Gu C Z, Meng X M 2014 Nanoscale 6 8949
[7] Hankare P P, Patil A A, Chate P A, Garadkar K M, Sathe D J, Manikshete A H, Mulla I S 2008 J. Cryst. Growth 311 15
[8] Shaw J C, Zhou H, Chen Y, Weiss N O, Liu Y, Huang Y, Duan X 2014 Nano Res. 7 511
[9] Wang X, Gong Y, Shi G, Chow W L, Keyshar K, Ye G, Vajtai R, Lou J, Liu Z, Ringe E, Tay B K, Ajayan P M 2014 ACS Nano 8 5125
[10] Wang B B, Zhu M K, Ostrikov K, Shao R W, Zheng K 2015 J. Alloys Compd. 647 734
[11] Alparone A 2012 Comput. Theor. Chem. 988 81
[12] Alemn-Vzquez L O, Hernndez-Prez F, Cano-Domnguez J L 2014 Fuel 117 463
[13] Tongay S, Zhou J, Ataca C, Lo K, Matthews T S, Li J, Grossman J C, Wu J 2012 Nano Lett. 12 5576
[14] Sugai S, Ueda T 1982 Phys. Rev. B 26 6554
[15] Tonndorf P, Schmidt R, Bttger P, Zhang X, Brner J, Liebig A, Albrecht M, Kloc C, Gordan O, Zahn D R T, Michaelis de Vasconcellos S, Bratschitsch R 2013 Opt. Express 21 4908
[16] Su S H, Hsu W T, Hsu C L, Chen C H, Chiu M H, Lin Y C, Chang W H, Suenaga K, He J H, Li L J 2014 Front. Energy Res. 2 (www.frontiersin.org, doi: 10.3389/fenrg.2014.00027)
[17] Wagner C D, Riggs W M, Davis L E, Moulder J F, Muilenberg G E 1979 Handbook of X-ray Photoelectron Spectroscopy (USA: Perkin-Elmer Corp., Physical Electronics Division) p92,104
[18] Spevack P A, McIntyre N S 1993 J. Phys. Chem. 97 11020
[19] Prasad K S, Patel H, Patel T, Patel K, Selvaraj K 2013 Coll. Surf. B 103 261
[20] Ohring M 1992 The Materials Science of Thin Films (Boston: Academic Press) p82
[21] Howe J M 1997 Interfaces in Materials (New York: John Wiley Sons, Inc.) p494
[22] Samant M S, Kerkar A S, Bharadwaj S R, Dharwadkar S R 1992 J. Alloys Compd. 187 373
[23] Yang B C, Wang W S 1994 Films Physics and Technology (Chengdo: Electronic Science and Technology Press) p151 (in Chinese) [杨邦朝, 王文生 1994 薄膜物理与技术 (成都: 电子科技大学出版社) 第151页]
[24] Li X L, Li Y D 2003 Chem. Eur. J. 9 2726
[25] Rao Y K 1983 Metallurg. Trans. B 14B 308
[26] Overschelde O V, Guisbiers G 2015 Opt. Laser Technol. 73 156
[27] Han M Y, zyilmaz B, Zhang Y, Kim P 2007 Phys. Rev. Lett. 98 206805
[28] Solieman A, Abu-Sehly A A 2010 Physica B 405 1101
[29] Robertson J 1996 Phys. Rev. B 53 16302
-
[1] Vishwanath S, Liu X, Rouvimov S, CMende P, Azcatl A, McDonnell S, Wallace R M, Feenstra R M, Furdyna J K, Jena D, Xing H G 2015 2D Mater. 2 024007
[2] Lai Z P 2013 Acta Phys. Sin. 62 056801 (in Chinese) [赖占平 2013 62 056801]
[3] Ostrikov K, Neyts E C, Meyyappan M 2013 Adv. Phys. 62 113
[4] Xie L Y, Xiao W B, Huang G Q, Hu A R, Liu J T 2014 Acta Phys. Sin. 63 057803 (in Chinese) [谢凌云, 肖文波, 黄国庆, 胡爱荣, 刘江涛 2014 63 057803]
[5] Nourbakhsh A, Cantoro M, Vosch T, Pourtois G, Clemente F, van der Veen M H, Hofkens J, Heyns M M, Gendt S D, Sels B F 2010 Nanotechnology 21 435203
[6] Xia J, Huang X, Liu L Z, Wang M, Wang L, Huang B, Zhu D D, Li J J, Gu C Z, Meng X M 2014 Nanoscale 6 8949
[7] Hankare P P, Patil A A, Chate P A, Garadkar K M, Sathe D J, Manikshete A H, Mulla I S 2008 J. Cryst. Growth 311 15
[8] Shaw J C, Zhou H, Chen Y, Weiss N O, Liu Y, Huang Y, Duan X 2014 Nano Res. 7 511
[9] Wang X, Gong Y, Shi G, Chow W L, Keyshar K, Ye G, Vajtai R, Lou J, Liu Z, Ringe E, Tay B K, Ajayan P M 2014 ACS Nano 8 5125
[10] Wang B B, Zhu M K, Ostrikov K, Shao R W, Zheng K 2015 J. Alloys Compd. 647 734
[11] Alparone A 2012 Comput. Theor. Chem. 988 81
[12] Alemn-Vzquez L O, Hernndez-Prez F, Cano-Domnguez J L 2014 Fuel 117 463
[13] Tongay S, Zhou J, Ataca C, Lo K, Matthews T S, Li J, Grossman J C, Wu J 2012 Nano Lett. 12 5576
[14] Sugai S, Ueda T 1982 Phys. Rev. B 26 6554
[15] Tonndorf P, Schmidt R, Bttger P, Zhang X, Brner J, Liebig A, Albrecht M, Kloc C, Gordan O, Zahn D R T, Michaelis de Vasconcellos S, Bratschitsch R 2013 Opt. Express 21 4908
[16] Su S H, Hsu W T, Hsu C L, Chen C H, Chiu M H, Lin Y C, Chang W H, Suenaga K, He J H, Li L J 2014 Front. Energy Res. 2 (www.frontiersin.org, doi: 10.3389/fenrg.2014.00027)
[17] Wagner C D, Riggs W M, Davis L E, Moulder J F, Muilenberg G E 1979 Handbook of X-ray Photoelectron Spectroscopy (USA: Perkin-Elmer Corp., Physical Electronics Division) p92,104
[18] Spevack P A, McIntyre N S 1993 J. Phys. Chem. 97 11020
[19] Prasad K S, Patel H, Patel T, Patel K, Selvaraj K 2013 Coll. Surf. B 103 261
[20] Ohring M 1992 The Materials Science of Thin Films (Boston: Academic Press) p82
[21] Howe J M 1997 Interfaces in Materials (New York: John Wiley Sons, Inc.) p494
[22] Samant M S, Kerkar A S, Bharadwaj S R, Dharwadkar S R 1992 J. Alloys Compd. 187 373
[23] Yang B C, Wang W S 1994 Films Physics and Technology (Chengdo: Electronic Science and Technology Press) p151 (in Chinese) [杨邦朝, 王文生 1994 薄膜物理与技术 (成都: 电子科技大学出版社) 第151页]
[24] Li X L, Li Y D 2003 Chem. Eur. J. 9 2726
[25] Rao Y K 1983 Metallurg. Trans. B 14B 308
[26] Overschelde O V, Guisbiers G 2015 Opt. Laser Technol. 73 156
[27] Han M Y, zyilmaz B, Zhang Y, Kim P 2007 Phys. Rev. Lett. 98 206805
[28] Solieman A, Abu-Sehly A A 2010 Physica B 405 1101
[29] Robertson J 1996 Phys. Rev. B 53 16302
计量
- 文章访问数: 7082
- PDF下载量: 250
- 被引次数: 0