搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Se和MoSe2纳米片的结构和发光性能

王必本 朱恪 王强

引用本文:
Citation:

Se和MoSe2纳米片的结构和发光性能

王必本, 朱恪, 王强

Structures and photoluminescence properties of Se and SeMo2 nanoflakes

Wang Bi-Ben, Zhu Ke, Wang Qiang
PDF
导出引用
  • 以Se粉和MoO3粉为源材料, 利用热丝化学气相沉积在N2中制备了Se和MoSe2纳米片. 利用场发射扫描电子显微镜、透射电子显微镜、X射线能谱仪、显微Raman光谱仪和X射线光电子谱仪对Se和MoSe2纳米片结构和组成进行了系统研究. 结果表明: Se粉和MoO3粉的混合与否直接影响了Se和MoSe2纳米片的形成和结构; 当Se粉和MoO3粉充分混合时形成Se纳米片, 而Se和MoO3粉分开放置时则形成MoSe2纳米片. 研究发现这是由于Se和MoO3粉的混合与否使Se和MoO3在气相中的不同反应所致. 对Se和MoSe2 纳米片的发光性能研究表明, 它们分别产生了774, 783和784 nm的发光峰, 不同于单层MoSe2 纳米片的发光性能. 这些结果丰富了对二维Se基纳米材料的合成和光学性能的知识, 有助于对Se基二维纳米材料的光电器件的研制.
    Se and MoSe2 nanoflakes are prepared in N2 environment by hot filament chemical vapor deposition through using Se and MoO3 powders as the source materials. The structures and compositions of Se and MoSe2 nanoflakes are systemically studied by using field emission scanning electron microscope, transmission electron microscope, energy dispersive X-ray spectroscope, micro-Raman spectroscope, and X-ray photoelectron spectroscope. The results indicate that the mixing of the Se and MoO3 powders directly affects the formations and structures of Se and MoSe2 nanoflakes. When the Se and MoO3 powders are fully mixed, the Se nanoflakes are formed, however the MoSe2 nanoflakes are formed under no mixture of Se and MoO3 powders. This is due to the fact that different reactions of Se and MoO3 powders in gas environment with or without mixing the Se and MoO3 powders are generated. The study of photoluminescence properties indicates that the photoluminescence peaks are generated at about 774, 783 nm and 783, 784 nm for the Se and MoSe2 nanoflakes, respectively, which are different from the photoluminescence properties of monolayer MoSe2 nanosheet. These outcomes can enrich our knowledge of the synthesis and optical properties of two-dimensional Se-based nanomaterials and will contribute to the development of optoelectronic devices of two-dimensional Se-based nanomaterials.
      通信作者: 王必本, bibenw@cqut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11474325)资助的课题.
      Corresponding author: Wang Bi-Ben, bibenw@cqut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11474325).
    [1]

    Vishwanath S, Liu X, Rouvimov S, CMende P, Azcatl A, McDonnell S, Wallace R M, Feenstra R M, Furdyna J K, Jena D, Xing H G 2015 2D Mater. 2 024007

    [2]

    Lai Z P 2013 Acta Phys. Sin. 62 056801 (in Chinese) [赖占平 2013 62 056801]

    [3]

    Ostrikov K, Neyts E C, Meyyappan M 2013 Adv. Phys. 62 113

    [4]

    Xie L Y, Xiao W B, Huang G Q, Hu A R, Liu J T 2014 Acta Phys. Sin. 63 057803 (in Chinese) [谢凌云, 肖文波, 黄国庆, 胡爱荣, 刘江涛 2014 63 057803]

    [5]

    Nourbakhsh A, Cantoro M, Vosch T, Pourtois G, Clemente F, van der Veen M H, Hofkens J, Heyns M M, Gendt S D, Sels B F 2010 Nanotechnology 21 435203

    [6]

    Xia J, Huang X, Liu L Z, Wang M, Wang L, Huang B, Zhu D D, Li J J, Gu C Z, Meng X M 2014 Nanoscale 6 8949

    [7]

    Hankare P P, Patil A A, Chate P A, Garadkar K M, Sathe D J, Manikshete A H, Mulla I S 2008 J. Cryst. Growth 311 15

    [8]

    Shaw J C, Zhou H, Chen Y, Weiss N O, Liu Y, Huang Y, Duan X 2014 Nano Res. 7 511

    [9]

    Wang X, Gong Y, Shi G, Chow W L, Keyshar K, Ye G, Vajtai R, Lou J, Liu Z, Ringe E, Tay B K, Ajayan P M 2014 ACS Nano 8 5125

    [10]

    Wang B B, Zhu M K, Ostrikov K, Shao R W, Zheng K 2015 J. Alloys Compd. 647 734

    [11]

    Alparone A 2012 Comput. Theor. Chem. 988 81

    [12]

    Alemn-Vzquez L O, Hernndez-Prez F, Cano-Domnguez J L 2014 Fuel 117 463

    [13]

    Tongay S, Zhou J, Ataca C, Lo K, Matthews T S, Li J, Grossman J C, Wu J 2012 Nano Lett. 12 5576

    [14]

    Sugai S, Ueda T 1982 Phys. Rev. B 26 6554

    [15]

    Tonndorf P, Schmidt R, Bttger P, Zhang X, Brner J, Liebig A, Albrecht M, Kloc C, Gordan O, Zahn D R T, Michaelis de Vasconcellos S, Bratschitsch R 2013 Opt. Express 21 4908

    [16]

    Su S H, Hsu W T, Hsu C L, Chen C H, Chiu M H, Lin Y C, Chang W H, Suenaga K, He J H, Li L J 2014 Front. Energy Res. 2 (www.frontiersin.org, doi: 10.3389/fenrg.2014.00027)

    [17]

    Wagner C D, Riggs W M, Davis L E, Moulder J F, Muilenberg G E 1979 Handbook of X-ray Photoelectron Spectroscopy (USA: Perkin-Elmer Corp., Physical Electronics Division) p92,104

    [18]

    Spevack P A, McIntyre N S 1993 J. Phys. Chem. 97 11020

    [19]

    Prasad K S, Patel H, Patel T, Patel K, Selvaraj K 2013 Coll. Surf. B 103 261

    [20]

    Ohring M 1992 The Materials Science of Thin Films (Boston: Academic Press) p82

    [21]

    Howe J M 1997 Interfaces in Materials (New York: John Wiley Sons, Inc.) p494

    [22]

    Samant M S, Kerkar A S, Bharadwaj S R, Dharwadkar S R 1992 J. Alloys Compd. 187 373

    [23]

    Yang B C, Wang W S 1994 Films Physics and Technology (Chengdo: Electronic Science and Technology Press) p151 (in Chinese) [杨邦朝, 王文生 1994 薄膜物理与技术 (成都: 电子科技大学出版社) 第151页]

    [24]

    Li X L, Li Y D 2003 Chem. Eur. J. 9 2726

    [25]

    Rao Y K 1983 Metallurg. Trans. B 14B 308

    [26]

    Overschelde O V, Guisbiers G 2015 Opt. Laser Technol. 73 156

    [27]

    Han M Y, zyilmaz B, Zhang Y, Kim P 2007 Phys. Rev. Lett. 98 206805

    [28]

    Solieman A, Abu-Sehly A A 2010 Physica B 405 1101

    [29]

    Robertson J 1996 Phys. Rev. B 53 16302

  • [1]

    Vishwanath S, Liu X, Rouvimov S, CMende P, Azcatl A, McDonnell S, Wallace R M, Feenstra R M, Furdyna J K, Jena D, Xing H G 2015 2D Mater. 2 024007

    [2]

    Lai Z P 2013 Acta Phys. Sin. 62 056801 (in Chinese) [赖占平 2013 62 056801]

    [3]

    Ostrikov K, Neyts E C, Meyyappan M 2013 Adv. Phys. 62 113

    [4]

    Xie L Y, Xiao W B, Huang G Q, Hu A R, Liu J T 2014 Acta Phys. Sin. 63 057803 (in Chinese) [谢凌云, 肖文波, 黄国庆, 胡爱荣, 刘江涛 2014 63 057803]

    [5]

    Nourbakhsh A, Cantoro M, Vosch T, Pourtois G, Clemente F, van der Veen M H, Hofkens J, Heyns M M, Gendt S D, Sels B F 2010 Nanotechnology 21 435203

    [6]

    Xia J, Huang X, Liu L Z, Wang M, Wang L, Huang B, Zhu D D, Li J J, Gu C Z, Meng X M 2014 Nanoscale 6 8949

    [7]

    Hankare P P, Patil A A, Chate P A, Garadkar K M, Sathe D J, Manikshete A H, Mulla I S 2008 J. Cryst. Growth 311 15

    [8]

    Shaw J C, Zhou H, Chen Y, Weiss N O, Liu Y, Huang Y, Duan X 2014 Nano Res. 7 511

    [9]

    Wang X, Gong Y, Shi G, Chow W L, Keyshar K, Ye G, Vajtai R, Lou J, Liu Z, Ringe E, Tay B K, Ajayan P M 2014 ACS Nano 8 5125

    [10]

    Wang B B, Zhu M K, Ostrikov K, Shao R W, Zheng K 2015 J. Alloys Compd. 647 734

    [11]

    Alparone A 2012 Comput. Theor. Chem. 988 81

    [12]

    Alemn-Vzquez L O, Hernndez-Prez F, Cano-Domnguez J L 2014 Fuel 117 463

    [13]

    Tongay S, Zhou J, Ataca C, Lo K, Matthews T S, Li J, Grossman J C, Wu J 2012 Nano Lett. 12 5576

    [14]

    Sugai S, Ueda T 1982 Phys. Rev. B 26 6554

    [15]

    Tonndorf P, Schmidt R, Bttger P, Zhang X, Brner J, Liebig A, Albrecht M, Kloc C, Gordan O, Zahn D R T, Michaelis de Vasconcellos S, Bratschitsch R 2013 Opt. Express 21 4908

    [16]

    Su S H, Hsu W T, Hsu C L, Chen C H, Chiu M H, Lin Y C, Chang W H, Suenaga K, He J H, Li L J 2014 Front. Energy Res. 2 (www.frontiersin.org, doi: 10.3389/fenrg.2014.00027)

    [17]

    Wagner C D, Riggs W M, Davis L E, Moulder J F, Muilenberg G E 1979 Handbook of X-ray Photoelectron Spectroscopy (USA: Perkin-Elmer Corp., Physical Electronics Division) p92,104

    [18]

    Spevack P A, McIntyre N S 1993 J. Phys. Chem. 97 11020

    [19]

    Prasad K S, Patel H, Patel T, Patel K, Selvaraj K 2013 Coll. Surf. B 103 261

    [20]

    Ohring M 1992 The Materials Science of Thin Films (Boston: Academic Press) p82

    [21]

    Howe J M 1997 Interfaces in Materials (New York: John Wiley Sons, Inc.) p494

    [22]

    Samant M S, Kerkar A S, Bharadwaj S R, Dharwadkar S R 1992 J. Alloys Compd. 187 373

    [23]

    Yang B C, Wang W S 1994 Films Physics and Technology (Chengdo: Electronic Science and Technology Press) p151 (in Chinese) [杨邦朝, 王文生 1994 薄膜物理与技术 (成都: 电子科技大学出版社) 第151页]

    [24]

    Li X L, Li Y D 2003 Chem. Eur. J. 9 2726

    [25]

    Rao Y K 1983 Metallurg. Trans. B 14B 308

    [26]

    Overschelde O V, Guisbiers G 2015 Opt. Laser Technol. 73 156

    [27]

    Han M Y, zyilmaz B, Zhang Y, Kim P 2007 Phys. Rev. Lett. 98 206805

    [28]

    Solieman A, Abu-Sehly A A 2010 Physica B 405 1101

    [29]

    Robertson J 1996 Phys. Rev. B 53 16302

  • [1] 费翔, 张秀梅, 付泉桂, 蔡正阳, 南海燕, 顾晓峰, 肖少庆. 基于熔融玻璃的预沉积法生长毫米级单晶MoS2及WS2-MoS2异质结.  , 2022, 71(4): 048101. doi: 10.7498/aps.71.20211735
    [2] 樊钦华, 祖延清, 李璐, 代锦飞, 吴朝新. 发光铅卤钙钛矿纳米晶稳定性的研究进展.  , 2020, 69(11): 118501. doi: 10.7498/aps.69.20191767
    [3] 张晓波, 青芳竹, 李雪松. 化学气相沉积石墨烯薄膜的洁净转移.  , 2019, 68(9): 096801. doi: 10.7498/aps.68.20190279
    [4] 冯秋菊, 李芳, 李彤彤, 李昀铮, 石博, 李梦轲, 梁红伟. 外电场辅助化学气相沉积方法制备网格状β-Ga2O3纳米线及其特性研究.  , 2018, 67(21): 218101. doi: 10.7498/aps.67.20180805
    [5] 王志军, 刘海燕, 杨勇, 蒋海峰, 段平光, 李盼来, 杨志平, 郭庆林. Ba2Ca(PO4)2:Eu2+蓝色荧光粉的合成及其发光特性.  , 2014, 63(7): 077802. doi: 10.7498/aps.63.077802
    [6] 冯秋菊, 许瑞卓, 郭慧颖, 徐坤, 李荣, 陶鹏程, 梁红伟, 刘佳媛, 梅艺赢. 衬底位置对化学气相沉积法制备的磷掺杂p型ZnO纳米材料形貌和特性的影响.  , 2014, 63(16): 168101. doi: 10.7498/aps.63.168101
    [7] 孙家跃, 曹纯, 杜海燕. NaLa(MoO4)2∶Eu3+的水热调控合成与发光特性研究.  , 2011, 60(12): 127801. doi: 10.7498/aps.60.127801
    [8] 刘元红, 庄卫东, 高文贵, 胡运生, 何涛, 何华强. 硼酸对亚微米级Ca3Sc2Si3O12:Ce绿色荧光粉的制备及发光性能的影响.  , 2010, 59(11): 8200-8204. doi: 10.7498/aps.59.8200
    [9] 肖思国, 阳效良, 丁建文, 颜晓红. 尺寸效应对Er3+掺杂纳米Y2O3的发光特性的影响.  , 2009, 58(1): 165-173. doi: 10.7498/aps.58.165
    [10] 杨志平, 刘玉峰, 王利伟, 余泉茂, 熊志军, 徐小岭. 用于白光LED的单一基质白光荧光粉Ca2SiO3Cl2:Eu2+,Mn2+的发光性质.  , 2007, 56(1): 546-550. doi: 10.7498/aps.56.546
    [11] 刘晃清, 王玲玲, 邹炳锁. 退火温度对ZrO2纳米材料中Eu3+离子发光的影响.  , 2007, 56(1): 556-560. doi: 10.7498/aps.56.556
    [12] 韩道丽, 赵元黎, 赵海波, 宋天福, 梁二军. 化学气相沉积法制备定向碳纳米管阵列.  , 2007, 56(10): 5958-5964. doi: 10.7498/aps.56.5958
    [13] 郭平生, 陈 婷, 曹章轶, 张哲娟, 陈奕卫, 孙 卓. 场致发射阴极碳纳米管的热化学气相沉积法低温生长.  , 2007, 56(11): 6705-6711. doi: 10.7498/aps.56.6705
    [14] 杨志平, 刘玉峰. Eu2+激活的Ca3SiO5绿色荧光粉的制备和发光特性研究.  , 2006, 55(9): 4946-4950. doi: 10.7498/aps.55.4946
    [15] 刘晃清, 王玲玲, 秦伟平. 二氧化锆纳米材料中Eu3+的发光特性.  , 2004, 53(1): 282-285. doi: 10.7498/aps.53.282
    [16] 曾湘波, 廖显伯, 王 博, 刁宏伟, 戴松涛, 向贤碧, 常秀兰, 徐艳月, 胡志华, 郝会颖, 孔光临. 等离子体增强化学气相沉积法实现硅纳米线掺硼.  , 2004, 53(12): 4410-4413. doi: 10.7498/aps.53.4410
    [17] 闫小琴, 刘祖琴, 唐东升, 慈立杰, 刘东方, 周振平, 梁迎新, 袁华军, 周维亚, 王 刚. 衬底对化学气相沉积法制备氧化硅纳米线的影响.  , 2003, 52(2): 454-458. doi: 10.7498/aps.52.454
    [18] 王永谦, 陈维德, 陈长勇, 刁宏伟, 张世斌, 徐艳月, 孔光临, 廖显伯. 快速热退火和氢等离子体处理对富硅氧化硅薄膜微结构与发光的影响.  , 2002, 51(7): 1564-1570. doi: 10.7498/aps.51.1564
    [19] 闫桂沈, 李贺军, 郝志彪. 热解碳化学气相沉积中的多重定态和非平衡相变的研究.  , 2002, 51(2): 326-331. doi: 10.7498/aps.51.326
    [20] 陈小华, 吴国涛, 邓福铭, 王健雄, 杨杭生, 王淼, 卢筱楠, 彭景翠, 李文铸. 射频等离子体辅助化学气相沉积方法生长碳纳米洋葱.  , 2001, 50(7): 1264-1267. doi: 10.7498/aps.50.1264
计量
  • 文章访问数:  7082
  • PDF下载量:  250
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-23
  • 修回日期:  2015-11-12
  • 刊出日期:  2016-02-05

/

返回文章
返回
Baidu
map