搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

两带超导体LaNiC2上临界磁场的理论分析

刘敏霞 何林 张耿 叶海 黄晓园 徐永钊

引用本文:
Citation:

两带超导体LaNiC2上临界磁场的理论分析

刘敏霞, 何林, 张耿, 叶海, 黄晓园, 徐永钊

Theoretical analysis of the upper critical field of two-band superconductor LaNiC2

Liu Min-Xia, He Lin, Zhang Geng, Ye Hai, Huang Xiao-Yuan, Xu Yong-Zhao
PDF
导出引用
  • 非中心对称超导体LaNiC2是传统BCS超导体还是能隙存在节点又或是两带超导体, 目前仍然存在争议. 基于此, 文章用两带Ginzburg-Landau理论分析了超导体LaNiC2的上临界磁场随温度的变化关系, 计算结果与实验结果在整个温度区间内符合得很好, 说明LaNiC2是两带超导体, 和陈健等人的观点一致. 文章还分析了两个不同能带对上临界磁场的影响, 发现相对较小的相干长度对LaNiC2 的上临界磁场影响较大.
    LaNiC2 is one of ternary RNiC2 compounds, where R is a rare earth or Y. Its space group is Amm2. the symmetry along the c-axis of the crystal structure lacks inversion symmetry along the c-axis. In 2009, Hillier et al. performed the muon spin relaxation experiment (upSR) which implied that time-reversal symmetry is broken in LaNiC2. As a weak correlation noncentrosymmetric superconductor, LaNiC2 has attracted wide research interest in recent years. Though a lot of theoretical and experimental studies have been carried out, the order parameter of this compound remains highly controversial. The measurements of specific heat and nuclear quadrupole relaxation suggest that LaNiC2 is normally BCS-like, which is further supported by theoretical calculations. But recently another study showed that the London penetration depth depends on T2 below 0.4 Tc indicative of nodes in the energy gap. Evidence of possible nodal superconductivity can also be inferred from the early measurements of specific heat given by Lee et al. However, the experimental results obtained by Chen et al. supported the existence of two-gap superconductivity in LaNiC2.Based on the above case, the two-band Ginzburg-Landau theory is used to study the temperature dependence of the upper critical field for the superconductor LaNiC2 in this paper. Choosing the Ginzburg-Landau theory for calculating the upper critical field is just because Ginzburg-Landau theoretical model is simple, easy to understand, low-calculation, and the clear physical meanings of the parameters. The theoretical results in this paper accord with the experimental data very well in the whole temperature range. The curve of Hc2 (T) has an obvious positive curvature near the critical temperature, which is typical feature of multi-gap superconductor. Therefore, our results show strong evidence that two-gap scenario is better to account for the superconductivity of LaNiC2, consistent with the results of Chen Jian et al. The influences of two different energy bands on the upper critical field are also studied. It is found that the relatively small coherent length has a grester influence on the upper critical magnetic field of LaNiC2. So if we want to improve the upper critical field of LaNiC2, reducing the relatively small coherence length can be achieved in theory.
      通信作者: 徐永钊, xuyzdgut@sina.com
    • 基金项目: 国家自然科学基金(批准号: 61501118)、广东省自然科学基金(批准号: 2014A030310262) 和广东省高等学校优秀青年教师培养计划资助的课题.
      Corresponding author: Xu Yong-Zhao, xuyzdgut@sina.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61501118), the Natural Science Foundation of Guangdong Province, China (Grant No. 2014A030310262) and the Training Plan of Guangdong Province for Outstanding Young Teachers in University.
    [1]

    Bodak O I, Marusin E P 1979 Dokl Akad. Nauk Ukr. SSR Ser. A 12 1048

    [2]

    Kotsanidis P, Yakinthos J, Gamari-Seale E J 1989 Less-Common Met. 152 287

    [3]

    Schafer W, Will G, Yakinthos J, Kotsanidis P 1992 J. Alloys Compd. 180 251

    [4]

    Hirose Y, Kishino T, Sakaguchi J, Miura Y, Honda F, Takeuchi T, Yamamoto E, Haga Y, Harima H, Settai R, ōnuki Y 2012 J. Phys. Soc. Jp. 81 3234

    [5]

    Hillier A D, Quintanilla J, Cywinski R 2009 Phys. Rev. Lett. 102 117007

    [6]

    Iwamoto Y, Iwasaki Y, Ueda K, Kohara T 1998 Phys. Lett. A 250 439

    [7]

    Pecharsky V K, Miller L L, Gschneidner K A 1998 Phys. Rev. B 58 497

    [8]

    Subedi A, Singh D J 2009 Phys. Rev. B 80 092506

    [9]

    Fujimoto S 2006 J. Phys. Soc. Jpn. 75 083704

    [10]

    Yanase Y, Sigrist M 2007 J. Phys. Soc. Jpn. 76 043712

    [11]

    Bonalde I, Ribeiro R L, Syu K J, Sung H H, Lee W H 2011 New J. Phys. 13 123022

    [12]

    Lee W H, Zeng H K, Yao Y D, Chen Y Y 1996 Physica C 266 138

    [13]

    Chen J, Jiao L, Zhang J L, Chen Y, Yang L, Nicklas M, Steglich F, Yuan H Q 2013 New J. Phys. 15 053005

    [14]

    Chen J, Jiao L, Zhang J L, Chen Y, Yang L, Yuan H Q 2013 J. Korean Phys. Soc. 63 463

    [15]

    Zhitomirsky M E, Dao V H 2004 Phys. Rev. B 69 054508

    [16]

    Askerzade I N, Gencer A, Guclu N 2002 Supercond. Sci. Technol. 15 13

    [17]

    Huang H, Lu Y Y, Wang W J 2012 Acta Phys. Sin. 61 167401 (in Chinese) [黄海, 陆艳艳, 王文杰 2012 61 167401]

    [18]

    Bulaevskii L N 1973 Sov. Phys. JETP 37 1133

    [19]

    Tinkham M 1996 Introduction to Superconductivity (2nd Ed.) (New York: McGraw-Hill) p134

    [20]

    Liu M X, Gan Z Z 2007 Chin. Phys. 16 826

    [21]

    Hase I, Yanagisawa T 2009 J. Phys. Soc. Jp. 78 084724

    [22]

    Hillier A D, Quintanilla J, Cywinski R 2009 Phys. Rev. Lett. 102 117007

    [23]

    Quintanilla J, Hillier A D, Annett J F, Cywinski R 2010 Phys. Rev. B 82 174511

  • [1]

    Bodak O I, Marusin E P 1979 Dokl Akad. Nauk Ukr. SSR Ser. A 12 1048

    [2]

    Kotsanidis P, Yakinthos J, Gamari-Seale E J 1989 Less-Common Met. 152 287

    [3]

    Schafer W, Will G, Yakinthos J, Kotsanidis P 1992 J. Alloys Compd. 180 251

    [4]

    Hirose Y, Kishino T, Sakaguchi J, Miura Y, Honda F, Takeuchi T, Yamamoto E, Haga Y, Harima H, Settai R, ōnuki Y 2012 J. Phys. Soc. Jp. 81 3234

    [5]

    Hillier A D, Quintanilla J, Cywinski R 2009 Phys. Rev. Lett. 102 117007

    [6]

    Iwamoto Y, Iwasaki Y, Ueda K, Kohara T 1998 Phys. Lett. A 250 439

    [7]

    Pecharsky V K, Miller L L, Gschneidner K A 1998 Phys. Rev. B 58 497

    [8]

    Subedi A, Singh D J 2009 Phys. Rev. B 80 092506

    [9]

    Fujimoto S 2006 J. Phys. Soc. Jpn. 75 083704

    [10]

    Yanase Y, Sigrist M 2007 J. Phys. Soc. Jpn. 76 043712

    [11]

    Bonalde I, Ribeiro R L, Syu K J, Sung H H, Lee W H 2011 New J. Phys. 13 123022

    [12]

    Lee W H, Zeng H K, Yao Y D, Chen Y Y 1996 Physica C 266 138

    [13]

    Chen J, Jiao L, Zhang J L, Chen Y, Yang L, Nicklas M, Steglich F, Yuan H Q 2013 New J. Phys. 15 053005

    [14]

    Chen J, Jiao L, Zhang J L, Chen Y, Yang L, Yuan H Q 2013 J. Korean Phys. Soc. 63 463

    [15]

    Zhitomirsky M E, Dao V H 2004 Phys. Rev. B 69 054508

    [16]

    Askerzade I N, Gencer A, Guclu N 2002 Supercond. Sci. Technol. 15 13

    [17]

    Huang H, Lu Y Y, Wang W J 2012 Acta Phys. Sin. 61 167401 (in Chinese) [黄海, 陆艳艳, 王文杰 2012 61 167401]

    [18]

    Bulaevskii L N 1973 Sov. Phys. JETP 37 1133

    [19]

    Tinkham M 1996 Introduction to Superconductivity (2nd Ed.) (New York: McGraw-Hill) p134

    [20]

    Liu M X, Gan Z Z 2007 Chin. Phys. 16 826

    [21]

    Hase I, Yanagisawa T 2009 J. Phys. Soc. Jp. 78 084724

    [22]

    Hillier A D, Quintanilla J, Cywinski R 2009 Phys. Rev. Lett. 102 117007

    [23]

    Quintanilla J, Hillier A D, Annett J F, Cywinski R 2010 Phys. Rev. B 82 174511

  • [1] 张艳艳, 陈家麟, 查国桥, 周世平. 多带超导体中的自发磁场和奇频配对态.  , 2019, 68(16): 167401. doi: 10.7498/aps.68.20190445
    [2] 李政, 周睿, 郑国庆. 铁基超导体的量子临界行为.  , 2015, 64(21): 217404. doi: 10.7498/aps.64.217404
    [3] 高继华, 王宇, 张超, 杨海朋, 戈早川. 复Ginzburg-Landau方程中模螺旋波的稳定性研究.  , 2014, 63(2): 020503. doi: 10.7498/aps.63.020503
    [4] 史良马, 周明健, 朱仁义. 磁场作用下超导圆环的涡旋演化.  , 2014, 63(24): 247501. doi: 10.7498/aps.63.247501
    [5] 高继华, 谢伟苗, 高加振, 杨海朋, 戈早川. 耦合复金兹堡-朗道(Ginzburg-Landau)方程中的模螺旋波.  , 2012, 61(13): 130506. doi: 10.7498/aps.61.130506
    [6] 吕翎, 李钢, 徐文, 吕娜, 范鑫. 复Ginzburg-Landau方程时空混沌的网络同步与参量辨识.  , 2012, 61(6): 060507. doi: 10.7498/aps.61.060507
    [7] 黄海, 陆艳艳, 王文杰. 超导材料NbS2上临界磁场的理论分析.  , 2012, 61(16): 167401. doi: 10.7498/aps.61.167401
    [8] 路洪艳, 陈三, 刘保通. 铜氧化物超导体两能隙问题的电子拉曼散射理论研究.  , 2011, 60(3): 037402. doi: 10.7498/aps.60.037402
    [9] 刘敏霞. 用两带Ginzburg-Landau理论分析两带超导体Lu2Fe3Si5的表面临界磁场.  , 2011, 60(1): 017401. doi: 10.7498/aps.60.017401
    [10] 冯 杰, 徐文成, 刘伟慈, 李书贤, 刘颂豪. 高阶色散效应常系数Ginzburg-Landau方程自相似脉冲演化的解析分析.  , 2008, 57(8): 4978-4983. doi: 10.7498/aps.57.4978
    [11] 冯 杰, 徐文成, 李书贤, 陈伟成, 宋 方, 申民常, 刘颂豪. 色散渐减光纤中Ginzburg-Landau方程的自相似脉冲演化的解析解.  , 2007, 56(10): 5835-5842. doi: 10.7498/aps.56.5835
    [12] 吴建宝. 层状铜氧化物超导体的有限温Landau理论.  , 2006, 55(4): 2049-2056. doi: 10.7498/aps.55.2049
    [13] 潘留仙, 左伟明, 颜家壬. Landau-Ginzburg-Higgs方程的微扰理论.  , 2005, 54(1): 1-5. doi: 10.7498/aps.54.1
    [14] 汪凯戈. 激光系统的Ginzburg-Landau方程及其相位扩散方程.  , 1993, 42(2): 256-263. doi: 10.7498/aps.42.256
    [15] 翁征宇, 吴杭生. λ小的超导体临界温度理论(Ⅲ).  , 1986, 35(4): 549-552. doi: 10.7498/aps.35.549
    [16] 翁征宇, 吴杭生. λ小的超导体临界温度理论(Ⅱ).  , 1984, 33(9): 1326-1331. doi: 10.7498/aps.33.1326
    [17] 吴杭生, 翁征宇. λ小的超导体临界温度理论(Ⅰ).  , 1984, 33(7): 975-988. doi: 10.7498/aps.33.975
    [18] 张裕恒, 曹效文. A型和B型超导体的临界场.  , 1980, 29(1): 127-130. doi: 10.7498/aps.29.127
    [19] 李宏成. 第二类超导体的临界磁场.  , 1965, 21(3): 560-568. doi: 10.7498/aps.21.560
    [20] 雷啸霖, 吴杭生. 在强磁场中金属薄膜的超导电理论(Ⅱ)——超导薄膜的临界磁场.  , 1964, 20(10): 991-1002. doi: 10.7498/aps.20.991
计量
  • 文章访问数:  6735
  • PDF下载量:  207
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-24
  • 修回日期:  2015-11-11
  • 刊出日期:  2016-02-05

/

返回文章
返回
Baidu
map