搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于光导微探针的近场/远场可扫描太赫兹光谱技术

许悦红 张学迁 王球 田震 谷建强 欧阳春梅 路鑫超 张文涛 韩家广 张伟力

引用本文:
Citation:

基于光导微探针的近场/远场可扫描太赫兹光谱技术

许悦红, 张学迁, 王球, 田震, 谷建强, 欧阳春梅, 路鑫超, 张文涛, 韩家广, 张伟力

Near-field and far-field scanning terahertz spectroscopy based on photoconductive microprobe

Xu Yue-Hong, Zhang Xue-Qian, Wang Qiu, Tian Zhen, Gu Jian-Qiang, Ouyang Chun-Mei, Lu Xin-Chao, Zhang Wen-Tao, Han Jia-Guang, Zhang Wei-Li
PDF
导出引用
  • 太赫兹技术已经成为涉及公共安全、军事国防和国民经济等国家核心利益的前沿研究领域. 以往太赫兹测量技术中通常以远场测量为主, 如常用的太赫兹时域光谱仪. 近年来太赫兹近场技术得到了迅猛的发展, 特别是基于光导天线的探针技术的发展, 为可扫描的太赫兹近场测量提供了可能. 本文详细报道了我们近期在可扫描太赫兹近场光谱仪研究中的进展. 采用光纤耦合的光导微探针实现了方便灵活的太赫兹近场/远场三维扫描, 并同时获得振幅和相位信息. 该系统将有可能广泛应用于人工微结构、石墨烯、表面等离子激元、波导传输、近场成像、生物样品检测、芯片检测等研究领域.
    Recently, terahertz radiation has been a branch of cutting-edge science and technology involving many fields such as public security, military defense and national economy. In the past, far-field measurements were widely carried out based on terahertz time-domain spectroscopy. But the spatial resolution is limited by far-field diffraction effect. In order to break diffraction limit and gain sub-wavelength spatial resolution in terahertz frequency region, a series of near-field detection methods came into being, such as confocal microscopy, using an aperture, guided mode, scattering, direct detection in the near-field, etc. Each method has its own advantages and disadvantages. Using the photoconductive-antenna tip is one of the direct detection methods and it delivers the possibility of near-field measurements of terahertz waves. In this method, the photoconductive-antenna tip is a tapered photoconductive tip probe. So it can be close enough to the sample surface and receive the near-field signal on the basis of principle of photoconductivity. In this way, high spatial resolution can be gained. In this article, we introduce our recent progress of near-field and far- field scanning terahertz spectroscopy system with photoconductive-antenna in detail. Firstly, we analyze and summarize the near-field detection methods that have been developed in these years. And then, using the femtosecond laser whose center wavelength is 800 nm and the photoconductive-antenna tip detector coupled with fiber, we construct fiber near-field/ far-field scanning terahertz spectroscopy (N/F-STS). The frequency bandwidth is in a range from 0.2 THz to 1.5 THz and the terahertz spot is circular and uniform indicated by performance test. Also the amplitude and phase of the terahertz field are recorded simultaneously. It has the ability to perform three-dimension scan in various experiment conditions conveniently. Finally, we introduce the real applications in our laboratory. N/F-STS can be used to scan spatial electric distribution in three dimensions and test the spectral properties in terahertz range like other traditional far-field methods. Nevertheless, the most importantly, N/F-STS is used to scan the terahertz near-field of samples, such as terahertz surface plasmon polaritons, etc. The presented method thus is useful in some application areas, such as metamaterials, graphene, surface plasmons, waveguide transmission, near-field imaging, biological test, and chip inspection.
      通信作者: 韩家广, jiaghan@tju.edu.cn;weili.zhang@okstate.edu ; 张伟力, jiaghan@tju.edu.cn;weili.zhang@okstate.edu
    • 基金项目: 国家重点基础研究发展计划(批准号: 2014CB339800)和国家自然科学基金(批准号: 61427814, 61138001, 61205098, 和61422509)、广西科学研究与技术开发项目(批准号: 1598017-1)和广西特聘专家专项经费资助的课题.
      Corresponding author: Han Jia-Guang, jiaghan@tju.edu.cn;weili.zhang@okstate.edu ; Zhang Wei-Li, jiaghan@tju.edu.cn;weili.zhang@okstate.edu
    • Funds: Project supported by the State Key Development Program for Basic Research of China (Grant No. 2014CB339800), the National Natural Science Foundation of China (Grant Nos. 61427814, 61138001, 61205098, 61422509), the Scientific Research and Technology Development Projects of Guangxi, China(Grant No. 1598017-1), the Special fund of Guangxi distinguished experts of China
    [1]

    Zhang X C, Xu J Z 2010 Introduction to THz Wave Photonics (New York: Springer) p149

    [2]

    Hunsche S, Koch M, Brener I, Nuss M C 1998 Opt. Commun. 150 22

    [3]

    Zinovev N, Andrianov A, Gallant A, Chamberlain J, Trukhin V 2008 Jetp. Lett. 88 492

    [4]

    Adam A J L, Brok J M, Seo M A, Ahn K J, Kim D S, Kang J H, Park Q H, Nagel M, Planken P C M 2008 Opt. Express 16 7407

    [5]

    Bitzer A, Ortner A, Merbold H, Feurer T, Walther M 2011 Opt. Express 19 2537

    [6]

    Mitrofanov O, Brener I, Harel R, Wynn J D, Pfeiffer L N, West K W, Federici J 2000 Appl. Phys. Lett. 77 3496

    [7]

    Macfaden A J, Reno J L, Brener I, Mitrofanov O 2014 Appl. Phys. Lett. 104 011110

    [8]

    Mueckstein R, Graham C, Renaud C C, Seeds A J, Harrington J A, Mitrofanov O 2011 J. Infrared. Millim. Te. 32 1031

    [9]

    Natrella M, Mitrofanov O, Mueckstein R, Graham C, Renaud C C, Seeds A J 2012 Opt. Express 20 16023

    [10]

    Misra M, Andrews S R, Maier S A 2012 Appl. Phys. Lett. 100 191109

    [11]

    Misra M, Pan Y, Williams C R, Maier S A, Andrews S R 2013 J. Appl. Phys. 113 193104

    [12]

    Chiu C M, Chen H W, Huang Y R, Hwang Y J, Lee W J, Huang H Y, Sun C K 2009 Opt. Lett. 34 1084

    [13]

    Ishihara K, Ohashi K, Ikari T, Minamide H, Yokoyama H, Shikata J, Ito H 2006 Appl. Phys. Lett. 89 201120

    [14]

    Bethe H A 1944 Phy. Rev. 66 163

    [15]

    Mendis R, Grischkowsky D 2001 Opt. Lett. 26 846

    [16]

    Liu J B, Mendis R, Sakoda N, Mittleman D 2011 Infrared, Millimeter and Terahertz Waves (IRMMW-THz), 2011 36th International Conference on Houston, TX, October 2-7, 2011 p1-2

    [17]

    Liu J B, Mendis R, Mittleman D, Sakoda N 2012 Appl. Phys. Lett. 100 031101

    [18]

    Awad M, Nagel M, Kurz H 2009 Appl. Phys. Lett. 94 051107

    [19]

    Adam R, Chusseau L, Grosjean T, Penarier A, Guillet J P, Charraut D 2009 J. Appl. Phys. 106 073107

    [20]

    Klein N, Lahl P, Poppe U, Kadlec F, Kuzel P 2005 J. Appl. Phys. 98 014910

    [21]

    Knab J R, Adam A J L, Chakkittakandy R, Planken P C M 2010 Appl. Phys. Lett. 97 031115

    [22]

    Chen Q, Zhang X C 2001 IEEE J. Sel. Top. Quant. 7 608

    [23]

    Gompf B, Gebert N, Heer H, Dressel M 2007 Appl. Phys. Lett. 90 082104

    [24]

    Chen Q, Jiang Z P, Xu G X, Zhang X C 2000 Opt. Lett. 25 1122

    [25]

    van der Valk N C J, Planken P C M 2002 Appl. Phys. Lett. 81 1558

    [26]

    Planken P C M, van der Valk N C J 2004 Opt. Lett. 29 2306

    [27]

    Chen H T, Kersting R, Cho G C 2003 Appl. Phys. Lett. 83 3009

    [28]

    Yuan T, Park H, Xu J Z, Han H, Zhang X C 2005 Ultrafast Phenomena XIV (Berlin Heidelberg: Springer) p759

    [29]

    L L, Sun J D, Roger A L, Sun Y F, Wu D M, Cai Y, Qin H 2015 Chin. Phys. B 24 028504

    [30]

    Lee J K, Plank P C M, Adam A J L 2007 Opt. Express 15 11781

    [31]

    Zhang Y, Wang X, Cui Y, Sun W 2009 Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), 2009 34th International Conference on Busan September. 21-25, 2009 p1-2

    [32]

    Yang Y P, Shi Y L, Yan W, Xu X L, Ma SH, Wang L 2005 Acta Phys. Sin. 54 4079 (in Chinese) [杨玉平, 施宇蕾, 严伟, 徐新龙, 马士华, 汪力 2009 54 4079]

    [33]

    Wachter M, Nagel M, Kurz H 2009 Appl. Phys. Lett. 95 041112

    [34]

    Nagel M, Safiei A, Sawallich S, Matheisen C, Pletzer T M, Mewe A A, Van der Borg N J C M, Cesar I, Kurz H 2013 28th European Photovoltaic Solar Energy Conference and Exhibition Paris, October 1, 2013 p856

    [35]

    Bhattacharya A, Georgiou G, Sawallich S, Matheisen C, Nagel M, Gomez Rivas J 2014 Infrared, Millimeter, and Terahertz waves (IRMMW-THz), 2014 39th International Conference on Tucson, AZ, September 14-19, 2014, p1

    [36]

    Nagel M, Michalski A, Kurz H 2011 Opt. Express 19 12509

    [37]

    Gallagher W J, Chi C C, Duling I N, Grischkowsky D, Halas N J, Ketchen M B, Kleinsasser A W 1987 Appl. Phys. Lett. 50 350

    [38]

    Grischkowsky D, Sren K, Martin V E, Fattinger C 1990 JOSA B 7 2006

    [39]

    Crooker S A 2002 Rev. Sci. Instrum. 73 3258

    [40]

    Ellrich F, Weinland T, Molter D, Jonuscheit J, Beigang R 2011 Rev. Sci. Instrum. 82 053102

    [41]

    Yang Y P, Shi Y L, Yan W, Xu X L, Ma H S, Wang L 2005 Acta Phys. Sin. 54 4079 (in Chinese) [胡明列, 宋有建, 刘博文, 方晓惠, 张弛, 刘华刚, 刘丰, 王昌雷, 柴路, 邢岐荣, 王清月 2005 54 4079]

    [42]

    Xu Y H, Zhang X Q, Tian Z, Gu J Q, Ouyang C M, Li Y F, Han J G, Zhang W L 2015 Appl. Phys. Lett. 107 021105

    [43]

    Wang Q, Zhang X Q, Xu Y H, Tian Z, Gu J Q, Yue W S, Zhang S, Han J G, Zhang W L 2015 Adv. Opt. Mater. 3 779

    [44]

    McIntosh A I, Yang B, Goldup S M, Watkinson M, Donnan R S 2013 Chem. Phys. Lett. 558 104

    [45]

    Wachter M, Nagel M, Kurz H 2009 Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), 2009 34th International Conference on Busan September 21-25, 2009 p1-2

    [46]

    Liu L X, Zhang X Q, Kenney M, Su X Q, Xu N N, OUyang C M, Shi Y L, Han J G, Zhang W L, Zhang S 2014 Adv. Mater. 26 5031

    [47]

    Imafuji O, Singh B P, Hirose Y, Fukushima Y, Takigawa S 2007 Appl. Phys. Lett. 91 071112

    [48]

    Zhang W L, Azad A K, Han J G, Xu J Z, Chen J, Zhang X C 2007 Phys. Rev. Lett. 98 183901

    [49]

    Zhang W L 2008 Eur. Phys. J. Appl. Phys. 43 1

    [50]

    Lin J, Mueller J P B, Wang Q, Yuan G H, Antoniou N, Yuan X C, Capasso F 2013 Science 340 331

    [51]

    Bitzer A, Merbold H, Thoman A, Feurer T, Helm H, Walther M 2009 Opt. Express 17 3826

    [52]

    Bitzer A, Wallauer J, Helm H, Merbold H, Feurer T, Walther M 2009 Opt. Express 17 22108

    [53]

    Wang K L, Mittleman D M 2004 Nature 432 376

    [54]

    Jeon T I, Grischkowsky D 2006 Appl. Phys. Lett. 88 061113

    [55]

    Chakkittakandy R, Corver J A W M, Planken P C M 2009 J. Pharm. Sci. 99 932

    [56]

    Bitzer A, Ortner A, Walther M 2010 Appl. Opt. 49 E1

    [57]

    Serita K, Murakami H, Kawayama I, Tonouchi M 2013 2013 Conference on Lasers and Electro-Optics Paacific Rim Kyoto, June 30-July 4, 2013 p11

  • [1]

    Zhang X C, Xu J Z 2010 Introduction to THz Wave Photonics (New York: Springer) p149

    [2]

    Hunsche S, Koch M, Brener I, Nuss M C 1998 Opt. Commun. 150 22

    [3]

    Zinovev N, Andrianov A, Gallant A, Chamberlain J, Trukhin V 2008 Jetp. Lett. 88 492

    [4]

    Adam A J L, Brok J M, Seo M A, Ahn K J, Kim D S, Kang J H, Park Q H, Nagel M, Planken P C M 2008 Opt. Express 16 7407

    [5]

    Bitzer A, Ortner A, Merbold H, Feurer T, Walther M 2011 Opt. Express 19 2537

    [6]

    Mitrofanov O, Brener I, Harel R, Wynn J D, Pfeiffer L N, West K W, Federici J 2000 Appl. Phys. Lett. 77 3496

    [7]

    Macfaden A J, Reno J L, Brener I, Mitrofanov O 2014 Appl. Phys. Lett. 104 011110

    [8]

    Mueckstein R, Graham C, Renaud C C, Seeds A J, Harrington J A, Mitrofanov O 2011 J. Infrared. Millim. Te. 32 1031

    [9]

    Natrella M, Mitrofanov O, Mueckstein R, Graham C, Renaud C C, Seeds A J 2012 Opt. Express 20 16023

    [10]

    Misra M, Andrews S R, Maier S A 2012 Appl. Phys. Lett. 100 191109

    [11]

    Misra M, Pan Y, Williams C R, Maier S A, Andrews S R 2013 J. Appl. Phys. 113 193104

    [12]

    Chiu C M, Chen H W, Huang Y R, Hwang Y J, Lee W J, Huang H Y, Sun C K 2009 Opt. Lett. 34 1084

    [13]

    Ishihara K, Ohashi K, Ikari T, Minamide H, Yokoyama H, Shikata J, Ito H 2006 Appl. Phys. Lett. 89 201120

    [14]

    Bethe H A 1944 Phy. Rev. 66 163

    [15]

    Mendis R, Grischkowsky D 2001 Opt. Lett. 26 846

    [16]

    Liu J B, Mendis R, Sakoda N, Mittleman D 2011 Infrared, Millimeter and Terahertz Waves (IRMMW-THz), 2011 36th International Conference on Houston, TX, October 2-7, 2011 p1-2

    [17]

    Liu J B, Mendis R, Mittleman D, Sakoda N 2012 Appl. Phys. Lett. 100 031101

    [18]

    Awad M, Nagel M, Kurz H 2009 Appl. Phys. Lett. 94 051107

    [19]

    Adam R, Chusseau L, Grosjean T, Penarier A, Guillet J P, Charraut D 2009 J. Appl. Phys. 106 073107

    [20]

    Klein N, Lahl P, Poppe U, Kadlec F, Kuzel P 2005 J. Appl. Phys. 98 014910

    [21]

    Knab J R, Adam A J L, Chakkittakandy R, Planken P C M 2010 Appl. Phys. Lett. 97 031115

    [22]

    Chen Q, Zhang X C 2001 IEEE J. Sel. Top. Quant. 7 608

    [23]

    Gompf B, Gebert N, Heer H, Dressel M 2007 Appl. Phys. Lett. 90 082104

    [24]

    Chen Q, Jiang Z P, Xu G X, Zhang X C 2000 Opt. Lett. 25 1122

    [25]

    van der Valk N C J, Planken P C M 2002 Appl. Phys. Lett. 81 1558

    [26]

    Planken P C M, van der Valk N C J 2004 Opt. Lett. 29 2306

    [27]

    Chen H T, Kersting R, Cho G C 2003 Appl. Phys. Lett. 83 3009

    [28]

    Yuan T, Park H, Xu J Z, Han H, Zhang X C 2005 Ultrafast Phenomena XIV (Berlin Heidelberg: Springer) p759

    [29]

    L L, Sun J D, Roger A L, Sun Y F, Wu D M, Cai Y, Qin H 2015 Chin. Phys. B 24 028504

    [30]

    Lee J K, Plank P C M, Adam A J L 2007 Opt. Express 15 11781

    [31]

    Zhang Y, Wang X, Cui Y, Sun W 2009 Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), 2009 34th International Conference on Busan September. 21-25, 2009 p1-2

    [32]

    Yang Y P, Shi Y L, Yan W, Xu X L, Ma SH, Wang L 2005 Acta Phys. Sin. 54 4079 (in Chinese) [杨玉平, 施宇蕾, 严伟, 徐新龙, 马士华, 汪力 2009 54 4079]

    [33]

    Wachter M, Nagel M, Kurz H 2009 Appl. Phys. Lett. 95 041112

    [34]

    Nagel M, Safiei A, Sawallich S, Matheisen C, Pletzer T M, Mewe A A, Van der Borg N J C M, Cesar I, Kurz H 2013 28th European Photovoltaic Solar Energy Conference and Exhibition Paris, October 1, 2013 p856

    [35]

    Bhattacharya A, Georgiou G, Sawallich S, Matheisen C, Nagel M, Gomez Rivas J 2014 Infrared, Millimeter, and Terahertz waves (IRMMW-THz), 2014 39th International Conference on Tucson, AZ, September 14-19, 2014, p1

    [36]

    Nagel M, Michalski A, Kurz H 2011 Opt. Express 19 12509

    [37]

    Gallagher W J, Chi C C, Duling I N, Grischkowsky D, Halas N J, Ketchen M B, Kleinsasser A W 1987 Appl. Phys. Lett. 50 350

    [38]

    Grischkowsky D, Sren K, Martin V E, Fattinger C 1990 JOSA B 7 2006

    [39]

    Crooker S A 2002 Rev. Sci. Instrum. 73 3258

    [40]

    Ellrich F, Weinland T, Molter D, Jonuscheit J, Beigang R 2011 Rev. Sci. Instrum. 82 053102

    [41]

    Yang Y P, Shi Y L, Yan W, Xu X L, Ma H S, Wang L 2005 Acta Phys. Sin. 54 4079 (in Chinese) [胡明列, 宋有建, 刘博文, 方晓惠, 张弛, 刘华刚, 刘丰, 王昌雷, 柴路, 邢岐荣, 王清月 2005 54 4079]

    [42]

    Xu Y H, Zhang X Q, Tian Z, Gu J Q, Ouyang C M, Li Y F, Han J G, Zhang W L 2015 Appl. Phys. Lett. 107 021105

    [43]

    Wang Q, Zhang X Q, Xu Y H, Tian Z, Gu J Q, Yue W S, Zhang S, Han J G, Zhang W L 2015 Adv. Opt. Mater. 3 779

    [44]

    McIntosh A I, Yang B, Goldup S M, Watkinson M, Donnan R S 2013 Chem. Phys. Lett. 558 104

    [45]

    Wachter M, Nagel M, Kurz H 2009 Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), 2009 34th International Conference on Busan September 21-25, 2009 p1-2

    [46]

    Liu L X, Zhang X Q, Kenney M, Su X Q, Xu N N, OUyang C M, Shi Y L, Han J G, Zhang W L, Zhang S 2014 Adv. Mater. 26 5031

    [47]

    Imafuji O, Singh B P, Hirose Y, Fukushima Y, Takigawa S 2007 Appl. Phys. Lett. 91 071112

    [48]

    Zhang W L, Azad A K, Han J G, Xu J Z, Chen J, Zhang X C 2007 Phys. Rev. Lett. 98 183901

    [49]

    Zhang W L 2008 Eur. Phys. J. Appl. Phys. 43 1

    [50]

    Lin J, Mueller J P B, Wang Q, Yuan G H, Antoniou N, Yuan X C, Capasso F 2013 Science 340 331

    [51]

    Bitzer A, Merbold H, Thoman A, Feurer T, Helm H, Walther M 2009 Opt. Express 17 3826

    [52]

    Bitzer A, Wallauer J, Helm H, Merbold H, Feurer T, Walther M 2009 Opt. Express 17 22108

    [53]

    Wang K L, Mittleman D M 2004 Nature 432 376

    [54]

    Jeon T I, Grischkowsky D 2006 Appl. Phys. Lett. 88 061113

    [55]

    Chakkittakandy R, Corver J A W M, Planken P C M 2009 J. Pharm. Sci. 99 932

    [56]

    Bitzer A, Ortner A, Walther M 2010 Appl. Opt. 49 E1

    [57]

    Serita K, Murakami H, Kawayama I, Tonouchi M 2013 2013 Conference on Lasers and Electro-Optics Paacific Rim Kyoto, June 30-July 4, 2013 p11

  • [1] 栾迦淇, 张亚杰, 陈羽, 郜定山, 李培丽, 李嘉琦, 李佳琪. 基于遗传算法的太赫兹多功能可重构狄拉克半金属编码超表面.  , 2024, 73(14): 144204. doi: 10.7498/aps.73.20240225
    [2] 王丹, 李九生, 郭风雷. 宽带吸收与极化转换可切换的太赫兹超表面.  , 2024, 73(14): 148701. doi: 10.7498/aps.73.20240525
    [3] 金嘉升, 马成举, 张垚, 张跃斌, 鲍士仟, 李咪, 李东明, 刘洺, 刘芊震, 张贻歆. 基于相变材料的慢光和吸收可切换多功能太赫兹超材料.  , 2023, 72(8): 084202. doi: 10.7498/aps.72.20222336
    [4] 窦琳, 麻艳娜, 顾兆麒, 刘家彤, 谷付星. 基于半导体纳米线/锥形微光纤探针的被动式近场光学扫描成像.  , 2022, 71(4): 044201. doi: 10.7498/aps.71.20211810
    [5] 彭晓昱, 周欢. 太赫兹波生物效应.  , 2022, (): . doi: 10.7498/aps.71.20211996
    [6] 李杭, 陈萍, 田进寿, 薛彦华, 王俊锋, 缑永胜, 张敏睿, 何凯, 徐向晏, 赛小锋, 李亚晖, 刘百玉, 王向林, 辛丽伟, 高贵龙, 汪韬, 王兴, 赵卫. 基于太赫兹脉冲加速及扫描电子束的高时间分辨探测器.  , 2022, 71(2): 028501. doi: 10.7498/aps.71.20210871
    [7] 仲敏, 李九生. 频率可切换太赫兹涡旋波束产生器.  , 2022, 71(21): 217401. doi: 10.7498/aps.71.20221184
    [8] 冯龙呈, 杜琛, 杨圣新, 张彩虹, 吴敬波, 范克彬, 金飚兵, 陈健, 吴培亨. 太赫兹实时近场光谱成像研究.  , 2022, 71(16): 164201. doi: 10.7498/aps.71.20220131
    [9] 陈志文, 佘圳跃, 廖开宇, 黄巍, 颜辉, 朱诗亮. 基于Rydberg原子天线的太赫兹测量.  , 2021, 70(6): 060702. doi: 10.7498/aps.70.20201870
    [10] 窦琳, 麻艳娜, 顾兆麒, 刘家彤, 谷付星. 基于半导体纳米线/锥形微光纤探针的被动式近场光学扫描成像.  , 2021, (): . doi: 10.7498/aps.70.20211810
    [11] 彭晓昱, 周欢. 太赫兹波生物效应.  , 2021, 70(24): 240701. doi: 10.7498/aps.70.20211996
    [12] 李杭, 陈萍, 田进寿. 基于太赫兹脉冲加速及扫描电子束的高时间分辨探测器研究.  , 2021, (): . doi: 10.7498/aps.70.20210871
    [13] 张倬铖, 王月莹, 张晓秋艳, 张天宇, 许星星, 赵陶, 宫玉彬, 魏彦玉, 胡旻. 太赫兹散射式扫描近场光学显微镜中探针与样品互作用及其影响探究.  , 2021, 70(24): 248703. doi: 10.7498/aps.70.20211715
    [14] 李绍和, 李九生, 孙建忠. 太赫兹频率编码器.  , 2019, 68(10): 104203. doi: 10.7498/aps.68.20190032
    [15] 张真真, 黎华, 曹俊诚. 高速太赫兹探测器.  , 2018, 67(9): 090702. doi: 10.7498/aps.67.20180226
    [16] 张学进, 陆延青, 陈延峰, 朱永元, 祝世宁. 太赫兹表面极化激元.  , 2017, 66(14): 148705. doi: 10.7498/aps.66.148705
    [17] 鹿文亮, 娄淑琴, 王鑫, 申艳, 盛新志. 基于太赫兹时域光谱技术的伪色彩太赫兹成像的实验研究.  , 2015, 64(11): 114206. doi: 10.7498/aps.64.114206
    [18] 王 潜, 徐金强, 武 锦, 李永贵. 利用扫描近场红外显微镜对化学样品组分进行成像研究.  , 2003, 52(2): 298-301. doi: 10.7498/aps.52.298
    [19] 柳学榕, 胡泊, 刘文汉, 高琛. 扫描近场微波显微镜测量非线性介电常数的理论校准系数.  , 2003, 52(1): 34-38. doi: 10.7498/aps.52.34
    [20] 张立源, 李永贵, 王潜. 扫描近场红外显微镜光纤探针的腐蚀制法.  , 2001, 50(12): 2322-2326. doi: 10.7498/aps.50.2322
计量
  • 文章访问数:  7258
  • PDF下载量:  415
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-08-11
  • 修回日期:  2015-10-28
  • 刊出日期:  2016-02-05

/

返回文章
返回
Baidu
map