搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Yb-In2O3纳米管的制备及其对甲醛的优异气敏性能

王雪松 王国光 李海英 王连元 刘丽 郭雪馨 王晗 廉红伟

引用本文:
Citation:

Yb-In2O3纳米管的制备及其对甲醛的优异气敏性能

王雪松, 王国光, 李海英, 王连元, 刘丽, 郭雪馨, 王晗, 廉红伟

Fabrication and excellent formaldehyde Gas sensing properties of Yb-doped In2O3 nanotubes

Wang Xue-Song, Wang Guo-Guang, Li Hai-Ying, Wang Lian-Yuan, Liu Li, Guo Xue-Xin, Wang Han, Lian Hong-Wei
PDF
导出引用
  • 采用单管静电纺丝的方法成功制备了纯的与Yb掺杂的In2O3纳米管(Yb-In2O3). 利用扫描电子显微镜(SEM)和X射线衍射对样品的结构和形貌进行了表征, 制作了基于纯In2O3和Yb-In2O3纳米管的气敏元件. 研究表明, Yb-In2O3纳米管气敏元件在230下对100 ppm甲醛的灵敏度为69.8, 是纯In2O3纳米管气敏元件对同浓度甲醛灵敏度(18.4)的3.8倍, 其对100 ppm甲醛的响应恢复时间分别为4 s和84 s. 并且, 基于Yb-In2O3纳米管的气敏元件对100 ppb甲醛的灵敏度达到2.5. 此外, 该气敏元件还具有出色的选择性及稳定性, 具备良好的实际应用前景.
    Pure and Yb-doped In2O3 nanotubes have been successfully fabricated by using the single-capillary electrospinning method, followed by calcination. The morphological and structural characteristics of the as-synthesized nanotubes are investigated by scanning electron microscope (SEM) and X-ray powder diffraction (XRD). The SEM images reveal that all the pure and Yb-doped In2O3 nanotubes are distributed evenly, and the average diameter of the as-synthesized nanotubes is about 200 nm. The XRD analysis results show that the as-prepared samples are well-crystallized, and the diffraction peaks can be indexed according to cubic In2O3. Gas sensors based on pure and Yb-doped In2O3 nanotubes have been fabricated and investigated for formaldehyde detection in detail. As shown in the experimental results, Yb-doped In2O3 nanotubes exhibit enhanced formaldehyde sensing properties compared with pure In2O3 nanotubes. At the optimum operating temperature of 230 ℃, the response of the gas sensors based on pure In2O3 nanotubes to 100 ppm formaldehyde is 18.4, while the response of gas sensors based on Yb-doped In2O3 nanotubes is 69.8 in the same working condition, which is 3.8 times larger than that of pure In2O3 nanotubes. The improvement of Yb-doped In2O3 nanotubes gas-sensing property may be due to the formation of the heterojunction structure at the interface between the two different semiconducting oxides. The response and recovery times of Yb-doped In2O3 nanotubes to 100 ppm formaldehyde are about 4 s and 84 s respectively, indicating the fast response speed of Yb-doped In2O3 nanotubes. Moreover, even at 100 ppb of formaldehyde a detectable response can be observed and the value is 2.5. The low limit of formaldehyde detection shows that the as-synthesized Yb-doped In2O3 nanotube gas sensors can be used for the detection of dilute formaldehyde. Furthermore, the Yb-doped In2O3 nanotube gas sensors have excellent selectivity towards formaldehyde. In this experiment, acetone has the highest sensitivity in a variety of common interfering gases and the response value is 22 to 100 ppm at 230 ℃, which is less than one-third of the sensitivity of formaldehyde. Carbon monoxide has the lowest response value of 1.7, which is much lower than that of formaldehyde. In addition, the responses of gas sensors to different concentrations of formaldehyde almost unchanged during the test (50 days), indicating that the Yb-doped In2O3 nanotubes possess good repeatability and long-term stability. The excellent formaldehyde gas-sensing properties of Yb-doped In2O3 nanotubes indicate that the as-synthesized nanomaterials can be used as a promising candidate to detect formaldehyde in practical applications.
      通信作者: 刘丽, liul99@jlu.edu.cn
    • 基金项目: 吉林省科技厅重点科技攻关项目(批准号: 20140204027GX)资助的课题.
      Corresponding author: Liu Li, liul99@jlu.edu.cn
    • Funds: Project supported by the Jilin Provincial Science and Technology Department, China (Grant No. 20140204027GX).
    [1]

    Liu H X, Li Z L, Li S T, Han J C, Wu C K 1988 Acta Phys. Sin. 37 470 (in Chinese) [刘厚祥, 李昭临, 李书涛, 韩景诚, 吴存恺 1988 37 470]

    [2]

    Zhang L J, Hu H F, Wang Z Y, Wei Y, Jia J F 2010 Acta Phys. Sin. 59 527 (in Chinese) [张丽娟, 胡慧芳, 王志勇, 魏燕, 贾金凤 2010 59 527]

    [3]

    Wang X, Li Y, Li X, Yu J, Al-Deyab S S, Ding B 2014 Sensor. Actuat. B: Chem. 203 333

    [4]

    Bo X Q, Liu C B, Li H Y, Liu L, Guo X, Liu Z, Liu L L, Su C 2014 Acta Phys. Sin. 63 176803 (in Chinese) [薄晓庆, 刘唱白, 李海英, 刘丽, 郭欣, 刘震, 刘丽丽, 苏畅 2014 63 176803]

    [5]

    Li W, Ma S, Yang G, Mao Y, Luo J, Cheng L, Gengzang D, Xu X, Yan S 2015 Mater. Lett. 138 188

    [6]

    Xu X L, Chen Y, Ma S Y, Li W Q, Mao Y Z 2015 Sensor. Actuat. B: Chem. 213 222

    [7]

    Wu H Z, Zhang Y Y, Wang X, Zhu X M, Yuan Z J, Xu T N 2010 Acta Phys. Sin. 59 5022 (in Chinese) [吴惠桢, 张莹莹, 王雄, 朱夏明, 原子健, 徐天宁 2010 59 5022]

    [8]

    Liang X, Kim T H, Yoon J W, Kwak C H, Lee J H 2015 Sensor. Actuat. B: Chem. 209 934

    [9]

    Kim H, An S, Jin C, Lee C 2012 Curr. Appl. Phys. 12 1125

    [10]

    Xing R, Xu L, Song J, Zhou C, Li Q, Liu D, Song H W 2015 Sci. Rep. UK 5 10717

    [11]

    Zhao C, Huang B, Xie E, Zhou J, Zhang Z 2015 Sensor. Actuat. B: Chem. 207 313

    [12]

    Gao J, Wang L, Kan K, Xu S, Jing L, Liu S, Shen P, Li L, Shi K 2014 J. Mater. Chem. A 2 949

    [13]

    Lai X, Shen G, Xue P, Yan B, Wang H, Li P, Xia W, Fang J 2015 Nanoscale 7 400

    [14]

    Chi X, Liu C, Liu L, Li S, Li H, Zhang X, Bo X, Shan H 2014 Mat. Sci. Semicon. Proc. 18 160

    [15]

    Cao Y, Li Y, Jia D, Xie J 2014 RSC Adv. 4 46179

    [16]

    Liu C, Chi X, Liu X, Wang S 2014 J. Alloy. Compd. 616 208

    [17]

    Miller D R, Akbar S A, Morris P A 2014 Sensor. Actuat. B: Chem. 204 250

    [18]

    Adachi G, Imanaka N 1998 Chem. Rev. 98 1479

    [19]

    Tang W, Wang J, Yao P, Li X 2014 Sensor. Actuat. B: Chem. 192 543

    [20]

    Deng J, Yu B, Lou Z, Wang L, Wang R, Zhang T 2013 Sensor. Actuat. B: Chem. 184 21

    [21]

    Badadhe S S, Mulla I S 2009 Sensor. Actuat. B: Chem. 143 164

  • [1]

    Liu H X, Li Z L, Li S T, Han J C, Wu C K 1988 Acta Phys. Sin. 37 470 (in Chinese) [刘厚祥, 李昭临, 李书涛, 韩景诚, 吴存恺 1988 37 470]

    [2]

    Zhang L J, Hu H F, Wang Z Y, Wei Y, Jia J F 2010 Acta Phys. Sin. 59 527 (in Chinese) [张丽娟, 胡慧芳, 王志勇, 魏燕, 贾金凤 2010 59 527]

    [3]

    Wang X, Li Y, Li X, Yu J, Al-Deyab S S, Ding B 2014 Sensor. Actuat. B: Chem. 203 333

    [4]

    Bo X Q, Liu C B, Li H Y, Liu L, Guo X, Liu Z, Liu L L, Su C 2014 Acta Phys. Sin. 63 176803 (in Chinese) [薄晓庆, 刘唱白, 李海英, 刘丽, 郭欣, 刘震, 刘丽丽, 苏畅 2014 63 176803]

    [5]

    Li W, Ma S, Yang G, Mao Y, Luo J, Cheng L, Gengzang D, Xu X, Yan S 2015 Mater. Lett. 138 188

    [6]

    Xu X L, Chen Y, Ma S Y, Li W Q, Mao Y Z 2015 Sensor. Actuat. B: Chem. 213 222

    [7]

    Wu H Z, Zhang Y Y, Wang X, Zhu X M, Yuan Z J, Xu T N 2010 Acta Phys. Sin. 59 5022 (in Chinese) [吴惠桢, 张莹莹, 王雄, 朱夏明, 原子健, 徐天宁 2010 59 5022]

    [8]

    Liang X, Kim T H, Yoon J W, Kwak C H, Lee J H 2015 Sensor. Actuat. B: Chem. 209 934

    [9]

    Kim H, An S, Jin C, Lee C 2012 Curr. Appl. Phys. 12 1125

    [10]

    Xing R, Xu L, Song J, Zhou C, Li Q, Liu D, Song H W 2015 Sci. Rep. UK 5 10717

    [11]

    Zhao C, Huang B, Xie E, Zhou J, Zhang Z 2015 Sensor. Actuat. B: Chem. 207 313

    [12]

    Gao J, Wang L, Kan K, Xu S, Jing L, Liu S, Shen P, Li L, Shi K 2014 J. Mater. Chem. A 2 949

    [13]

    Lai X, Shen G, Xue P, Yan B, Wang H, Li P, Xia W, Fang J 2015 Nanoscale 7 400

    [14]

    Chi X, Liu C, Liu L, Li S, Li H, Zhang X, Bo X, Shan H 2014 Mat. Sci. Semicon. Proc. 18 160

    [15]

    Cao Y, Li Y, Jia D, Xie J 2014 RSC Adv. 4 46179

    [16]

    Liu C, Chi X, Liu X, Wang S 2014 J. Alloy. Compd. 616 208

    [17]

    Miller D R, Akbar S A, Morris P A 2014 Sensor. Actuat. B: Chem. 204 250

    [18]

    Adachi G, Imanaka N 1998 Chem. Rev. 98 1479

    [19]

    Tang W, Wang J, Yao P, Li X 2014 Sensor. Actuat. B: Chem. 192 543

    [20]

    Deng J, Yu B, Lou Z, Wang L, Wang R, Zhang T 2013 Sensor. Actuat. B: Chem. 184 21

    [21]

    Badadhe S S, Mulla I S 2009 Sensor. Actuat. B: Chem. 143 164

  • [1] 毕文杰, 杨爽, 周静, 金伟, 陈文. Cu3Mo2O9/MoO3纳米复合材料制备及三甲胺气敏性能研究.  , 2023, 72(16): 168103. doi: 10.7498/aps.72.20230720
    [2] 韩丹, 刘志华, 刘琭琭, 韩晓美, 刘东明, 禚凯, 桑胜波. 新型二维材料Ti3C2Tx MXene制备及其气敏性能研究.  , 2022, 71(1): 010701. doi: 10.7498/aps.71.20211048
    [3] 韩丹, 刘志华, 刘琭琭, 韩晓美, 刘东明, 禚凯, 桑胜波. 新型二维材料Ti3C2Tx MXene制备及其气敏性能研究.  , 2021, (): . doi: 10.7498/aps.70.20211048
    [4] 张国英, 焦兴强, 刘业舒, 张安国, 孟春雪. 缺陷与掺杂共存的黑磷烯甲醛传感行为的电子理论.  , 2020, 69(23): 237101. doi: 10.7498/aps.69.20200990
    [5] 李东珂, 贺冰彦, 陈坤权, 皮明雨, 崔玉亭, 张丁可. Au纳米颗粒负载WO3纳米花复合结构的二甲苯气敏性能.  , 2019, 68(19): 198101. doi: 10.7498/aps.68.20190678
    [6] 赵博硕, 强晓永, 秦岳, 胡明. 氧化钨纳米线气敏传感器的制备及其室温NO2敏感特性.  , 2018, 67(5): 058101. doi: 10.7498/aps.67.20172236
    [7] 李酽, 李娇, 陈丽丽, 连晓雪, 朱俊武. 外电场极化对纳米氧化锌拉曼活性及气敏性能的影响.  , 2018, 67(14): 140701. doi: 10.7498/aps.67.20180182
    [8] 张玮祎, 胡明, 刘星, 李娜, 闫文君. 硅纳米线/氧化钒纳米棒复合材料的制备与气敏性能研究.  , 2016, 65(9): 090701. doi: 10.7498/aps.65.090701
    [9] 严达利, 李申予, 刘士余, 竺云. 银纳米颗粒/多孔硅复合材料的制备与气敏性能研究.  , 2015, 64(13): 137102. doi: 10.7498/aps.64.137102
    [10] 严达利, 李申予, 刘士余, 竺云. 银纳米颗粒/多孔硅复合材料的制备与气敏性能研究.  , 2015, 64(13): 137104. doi: 10.7498/aps.64.137104
    [11] 李干, 程谋森, 李小康. 激光烧蚀聚甲醛的热-化学耦合模型及其验证.  , 2014, 63(10): 107901. doi: 10.7498/aps.63.107901
    [12] 胡杰, 邓霄, 桑胜波, 李朋伟, 李刚, 张文栋. 微流控技术制备ZnO纳米线阵列及其气敏特性.  , 2014, 63(20): 207102. doi: 10.7498/aps.63.207102
    [13] 李振武. 单壁碳纳米管膜及其三聚氰胺甲醛树脂复合材料的光电特性.  , 2014, 63(10): 106101. doi: 10.7498/aps.63.106101
    [14] 李明阳, 于明朗, 苏庆, 刘雪芹, 谢二庆, 张晓倩. 生长在Si基底上VOX纳米管形貌的时间影响因子及其气敏性初探.  , 2012, 61(23): 236101. doi: 10.7498/aps.61.236101
    [15] 秦玉香, 王飞, 沈万江, 胡明. 氧化钨纳米线-单壁碳纳米管复合型气敏元件的室温NO2敏感性能与机理.  , 2012, 61(5): 057301. doi: 10.7498/aps.61.057301
    [16] 王燕, 姚志, 冯春雷, 刘佳宏, 丁洪斌. 355 nm激光光电离甲醛飞行时间质谱的研究.  , 2012, 61(1): 013301. doi: 10.7498/aps.61.013301
    [17] 张丽娟, 胡慧芳, 王志勇, 魏燕, 贾金凤. 硼掺杂单壁碳纳米管吸附甲醛的电子结构和光学性能研究.  , 2010, 59(1): 527-531. doi: 10.7498/aps.59.527
    [18] 张 苑, 赵 颖, 蔡 宁, 熊绍珍. 锐钛矿相TiO2纳米管的制备及其染料敏化太阳电池.  , 2008, 57(9): 5806-5809. doi: 10.7498/aps.57.5806
    [19] 宋晓书, 令狐荣锋, 吕 兵, 程新路, 杨向东. 渐近非对称陀螺分子H122C16O的高温光谱.  , 2008, 57(6): 3440-3445. doi: 10.7498/aps.57.3440
    [20] 刘厚祥, 李昭临, 李书涛, 韩景诚, 吴存恺. 甲醛的态选择性多光子电离研究.  , 1988, 37(3): 470-474. doi: 10.7498/aps.37.470
计量
  • 文章访问数:  5947
  • PDF下载量:  201
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-04
  • 修回日期:  2015-10-22
  • 刊出日期:  2016-02-05

/

返回文章
返回
Baidu
map