-
叠层衍射成像是一种新兴的无透镜成像技术, 目前限制这项技术发展的是光束透过样品时的乘法近似假设, 这意味着在可见光域微米级分辨率下, 叠层衍射成像的样品厚度不能超过数十微米. 通过将样品沿轴多层切片的方式, 在模拟实验和光学实验中均实现了对毫米量级厚样品的三维叠层衍射成像. 模拟实验结果表明, 单波长并不能很好地恢复三维厚样品, 从而有必要引入多波长光束照明, 随着波长数量的增加, 三维厚样品的复原质量不断提高. 光学实验使用两组不同厚度的样品进行实验验证, 进一步研究了波长数量对复原结果的影响. 随着波长数量增加, 复原图像质量不断提高, 证明了模拟实验的结论. 利用所建光学实验装置, 在三波长照明条件下取得了最好的成像与分离效果. 同时针对实验中出现的叠影现象做出了合理的解释. 研究结果对提高厚样品三维叠层衍射成像的质量具有现实意义.Ptychography is a new kind of lens-less imaging technology. What restricts the technique is the assumption of a multiplicative interaction between the illuminating coherent beam and the specimen, i.e., and the ptychography cannot be applied to samples no thicker than a few tens of micrometers in the case of visible-light imaging at micron-scale resolution. In the present work, we split a sample into axial sections, thereby realize three-dimensional ptychographic imaging of thick samples at the millimeter level in a series of computer simulations and optical experiments. Our simulation results reveal that by using single wavelength we cannot achieve good-quality images of thick samples. Thus it is necessary to introduce more wavelengths for illumination. With increasing the number of wavelengths, the imaging quality of three-dimensional thick samples can be enhanced continually. Then we make further study on the relationship between the imaging quality and the magnitude of wavelength in optical experiments by using two groups of samples with different thickness values. The results demonstrate that our experimental results are highly consistent with simulations. For our concrete configuration in this paper, the best results of imaging and separation may be obtained for the case of tri-wavelength. At the same time we make a reasonable explanation for the phenomenon of fold-over in the experiment. Our results are important and meaningful for the practical utilizing of three-dimensional ptychography of thick samples.
-
Keywords:
- thick samples /
- three-dimensional ptychography /
- iterative engine /
- multi-wavelength
[1] Rodenburg J M 2008 Adv. Imag. Electron Phys. 150 87
[2] Maiden A M, Rodenburg J M, Humphry M J 2010 Opt. Lett. 35 2585
[3] Wang Z H, Wang Y L, Li T, Shi Y S 2014 Acta Phys. Sin. 63 164204 (in Chinese) [王治昊, 王雅丽, 李拓, 史祎诗 2014 63 164204]
[4] Wang Y, Li T, Gao Q, Zhang S, Shi Y 2013 Opt. Eng. 52 091720
[5] Shi Y S, Wang Y L, Li T, Gao Q K, Wan H, Zhang S G, Wu Z B 2013 Chin. Phys. Lett. 30 074203
[6] Shi Y, Li T, Wang Y, Gao Q, Zhang S, Li H 2013 Opt. Lett. 38 1425
[7] Humphry M J, Kraus B, Hurst A C, Maiden A M, Rodenburg J M 2012 Nat. Commun. 3 730
[8] Rodenburg J, Hurst A, Cullis A, Dobson B, Pfeiffer F, Bunk O, David C, Jefimovs K, Johnson I 2007 Phys. Rev. Lett. 98 034801
[9] Hegerl R, Hoppe W 1972 Proceeding of the 5th European Congress on Electron Microscopy (London: Institute of Physics) p628
[10] Hoppe W 1969 Acta Crystallogr. A: Cryst. Phys. Diffrac. Theore. General Crystallogr. 25 495
[11] Fienup J R 1982 Appl. Opt. 21 2769
[12] Rodenburg J M, Faulkner H M L 2004 Appl. Phys. Lett. 85 4795
[13] Faulkner H, Rodenburg J 2004 Phys. Rev. Lett. 93 023903
[14] Maiden A M, Rodenburg J M 2009 Ultramicroscopy 109 1256
[15] Maiden A M, Humphry M J, Rodenburg J M 2012 J. Opt. Soc. 29 1606
[16] Godden T M, Suman R, Humphry M J, Rodenburg J M, Maiden A M 2014 Opt. Express 22 12513
[17] Pan X C, Veetil S P, Liu C, Lin Q, Zhu J Q 2013 Chin. Opt. Lett. 11 021103
[18] Shi Y S, Wang Y L, Zhang S G 2013 Chin. Phys. Lett. 30 054203
[19] Wang Y L, Shi Y S, Li T, Gao Q K, Xiao J, Zhang S G 2013 Acta Phys. Sin. 62 064206 (in Chinese) [王雅丽, 史祎诗, 李拓, 高乾坤, 肖俊, 张三国 2013 62 064206]
[20] Shi Y S, Situ G H, Zhang J J 2008 Opt. Lett. 33 542
-
[1] Rodenburg J M 2008 Adv. Imag. Electron Phys. 150 87
[2] Maiden A M, Rodenburg J M, Humphry M J 2010 Opt. Lett. 35 2585
[3] Wang Z H, Wang Y L, Li T, Shi Y S 2014 Acta Phys. Sin. 63 164204 (in Chinese) [王治昊, 王雅丽, 李拓, 史祎诗 2014 63 164204]
[4] Wang Y, Li T, Gao Q, Zhang S, Shi Y 2013 Opt. Eng. 52 091720
[5] Shi Y S, Wang Y L, Li T, Gao Q K, Wan H, Zhang S G, Wu Z B 2013 Chin. Phys. Lett. 30 074203
[6] Shi Y, Li T, Wang Y, Gao Q, Zhang S, Li H 2013 Opt. Lett. 38 1425
[7] Humphry M J, Kraus B, Hurst A C, Maiden A M, Rodenburg J M 2012 Nat. Commun. 3 730
[8] Rodenburg J, Hurst A, Cullis A, Dobson B, Pfeiffer F, Bunk O, David C, Jefimovs K, Johnson I 2007 Phys. Rev. Lett. 98 034801
[9] Hegerl R, Hoppe W 1972 Proceeding of the 5th European Congress on Electron Microscopy (London: Institute of Physics) p628
[10] Hoppe W 1969 Acta Crystallogr. A: Cryst. Phys. Diffrac. Theore. General Crystallogr. 25 495
[11] Fienup J R 1982 Appl. Opt. 21 2769
[12] Rodenburg J M, Faulkner H M L 2004 Appl. Phys. Lett. 85 4795
[13] Faulkner H, Rodenburg J 2004 Phys. Rev. Lett. 93 023903
[14] Maiden A M, Rodenburg J M 2009 Ultramicroscopy 109 1256
[15] Maiden A M, Humphry M J, Rodenburg J M 2012 J. Opt. Soc. 29 1606
[16] Godden T M, Suman R, Humphry M J, Rodenburg J M, Maiden A M 2014 Opt. Express 22 12513
[17] Pan X C, Veetil S P, Liu C, Lin Q, Zhu J Q 2013 Chin. Opt. Lett. 11 021103
[18] Shi Y S, Wang Y L, Zhang S G 2013 Chin. Phys. Lett. 30 054203
[19] Wang Y L, Shi Y S, Li T, Gao Q K, Xiao J, Zhang S G 2013 Acta Phys. Sin. 62 064206 (in Chinese) [王雅丽, 史祎诗, 李拓, 高乾坤, 肖俊, 张三国 2013 62 064206]
[20] Shi Y S, Situ G H, Zhang J J 2008 Opt. Lett. 33 542
计量
- 文章访问数: 7818
- PDF下载量: 388
- 被引次数: 0