搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于支持向量机的微波链路雨强反演方法

宋堃 高太长 刘西川 印敏 薛杨

引用本文:
Citation:

基于支持向量机的微波链路雨强反演方法

宋堃, 高太长, 刘西川, 印敏, 薛杨

Method and experiment of rainfall intensity inversion using a microwave link based on support vector machine

Song Kun, Gao Tai-Chang, Liu Xi-Chuan, Yin Min, Xue Yang
PDF
导出引用
  • 为提高微波链路雨致衰减反演雨强精度, 在Mie散射理论、气体吸收衰减模型以及Gamma雨滴谱分布的基础上, 将支持向量机引入到微波链路测量降水中, 提出了基于支持向量机的微波链路雨强反演方法, 并开展了15–20 GHz频段的视距微波链路与地面雨滴谱仪的同步观测降雨实验. 实验结果表明, 基于支持向量机的微波链路雨强反演模型的反演雨强与实测雨强的相关系数全部高于0.6, 最高达到0.9674; 雨强的均方根误差最小值为0.5780 mm/h, 累积降雨量的绝对最小误差仅为0.0080 mm; 相对偏差大部分在10%以内, 最小偏差为0.7425%. 实验结果验证了基于支持向量机的微波链路雨强反演方法的有效性、准确性和适用性, 对于进一步提高微波链路反演降雨精度、改善降水监测效果具有重要意义.
    The precipitation is an important physical phenomenon. The real-time, accurate measurement of rainfall intensity has important significance in meteorological support, agriculture, weather forecasting, transportation industry and military mission. However, current methods, such as the rain gauge, the weather radar and meteorological satellite, are unable to meet the needs in all the areas above at present. The network of rain gauge is costly. Meanwhile, rain gauge has low spatial and temporal resolution. And the weather radar has a big deviation because of the ground clutter. Besides, the meteorological satellite is unable to measure the surface rainfall. Thus, a method of using the measurement of microwave rain-induced attenuation for rainfall estimation has been presented in meteorological field recently by meteorological experts and it has made some progress. The method based on microwave link has low cost because of using preexisting microwave device. There are also many preexisting microwave transmission networks, which can be used by rainfall field inversion in the future research. The method measures rainfall intensity more accurately because the propagation path of microwave is close to the surface. Many models for inversing rainfall intensity by rain-induced microwave attenuation have been put forward on account of the method advantages. The commonly used model for inversion of rain rate is given by International Telecommunication Union (ITU). However, the model presented by ITU ignores a number of meteorological factors such as temperature, humidity and air pressure, which to some degree reduces the accuracy of the rainfall inversion based on microwave link. Thus, based on the theory of support vector machine (SVM), an inversion method of the path rainfall intensity by using a microwave link is proposed. Starting from the theory of Mie scattering and the atmospheric gas absorption attenuation model, a model of rainfall intensity inversion of line-of-sight microwave links is proposed, which is based on support vector machine, the microwave rain attenuation characteristics and the Gamma drop-size distribution. One line-of-sight microwave link is designed and used to measure the microwave rain-induced attenuation and inverse rainfall. Compared with actual rainfall intensity measured by a disdrometer, inversion rainfall intensity shows a satisfactory result. The correlation coefficient of rain rate is inversed by microwave link based on SVM and that of disdrometer is higher than 0.6 mostly, and the maximum value is 0.9674; the minimum value of the root-mean-square error of the rain rate is 0.5780 mm/h; the minimum value of the error of accumulated rain amount is 0.0080 mm; the relative error of accumulated rain amount is less than 10% and its minimum value is 0.7425%. All these parameters above are superior to ITU's. Therefore, the inversion result demonstrates the validity, feasibility and accuracy of rainfall inversion model using a microwave link based on SVM. The model we present is of great significance for further improving the accuracy of inversion of rain rate based on microwave link and rainfall monitoring.
      通信作者: 高太长, 2009gaotc@gmail.com
    • 基金项目: 国家自然科学基金(批准号: 41475020, 41405024, 41327003)资助的课题.
      Corresponding author: Gao Tai-Chang, 2009gaotc@gmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 41475020, 41405024, 41327003).
    [1]

    Gao T C 2012 Meteorol. Hydrol. Eq. 23 1 (in Chinese) [高太长 2012 气象水文装备 23 1]

    [2]

    L D R, Wang P C, Qiu J H, Tao S Y 2003 Chin. J. Atmos. Sci. 27 552 (in Chinese) [吕达仁, 王普才, 邱金恒, 陶诗言 2003 大气科学 27 552]

    [3]

    Liang H H, Xu B X, Liu L P, Ge R S 2005 Adv. Earth Sci. 20 541 (in Chinese) [梁海河, 徐宝祥, 刘黎平, 葛润生 2005 地球科学进展 20 541]

    [4]

    Qie X S, L D R, Chen H B, Wang P C, Duan S, Zhang W X 2008 Chin. J. Atmos. Sci. 32 867 (in Chinese) [郄秀书, 吕达仁, 陈洪滨, 王普才, 段树, 章文星 2008 大气科学 32 867]

    [5]

    Messer H, Zinevich A, Alpert P 2006 Science 312 713

    [6]

    Goldshtein O, Messer H, Zinevich A 2009 IEEE Trans. Signal Proces. 57 1616

    [7]

    Messer H, Zinevich A, Alpert P 2012 IEEE Trans. Instrum. Meas. 15 32

    [8]

    David N, Alpert P, Messer H 2013 Atmos. Res. 131 13

    [9]

    Overeem A, Leijnse H, Uijlenhoet R 2013 Proc. Natl. Acad. Sci. USA 110 2741

    [10]

    Liu X C, Liu L, Gao T C, Ren J P 2013 J. Infrared Millim. Waves 32 379 (in Chinese) [刘西川, 刘磊, 高太长, 任景鹏 2013 红外与毫米波学报 32 379]

    [11]

    Liu X C, Gao T C, Liu L, Zhai D L 2014 Acta Phys. Sin. 63 199201 (in Chinese) [刘西川, 高太长, 刘磊, 翟东力 2014 63 199201]

    [12]

    Jiang S T, Gao T C, Liu X C, Liu L, Liu Z T 2013 Acta Phys. Sin. 62 154303 (in Chinese) [姜世泰, 高太长, 刘西川, 刘磊, 刘志田 2013 62 154303]

    [13]

    Yin M, Jiang S T, Gao T C, Liu X C, Liang M Y, Ge S R, Cao C K 2015 Meteorol. Sci. Technol. 43 1 (in Chinese) [印敏, 姜世泰, 高太长, 刘西川, 梁妙元, 戈书睿, 曹承堃 2015 气象科技 43 1]

    [14]

    Gao T C, Song K, Liu X C, Yin M, Liu L, Jiang S T 2015 Acta Phys. Sin. 64 174301 (in Chinese) [高太长, 宋堃, 刘西川, 印敏, 刘磊, 姜世泰 2015 64 174301]

    [15]

    International Telecommunication Union 2005 Rec. ITU-R p838-3

    [16]

    Zhao H G, Wen J H, Liu Y Z, Yu D L, Wang G, Wen X S 2008 Chin. Phys. B 17 1305

    [17]

    Liu X C, Gao T C, Han X D 2010 J. Meteorol. Sci. 30 42 (in Chinese) [刘西川, 高太长, 韩小冬 2010 气象科学 30 42]

    [18]

    David N, Alpert P, Messer H 2009 Atmos. Chem. Phys. 9 2413

    [19]

    Chen B J, Li Z H, Liu J C, Gong F J 1998 Acta Meteorol. Sin. 56 123 (in Chinese) [陈宝君, 李子华, 刘吉成, 宫福久 1998 气象学报 56 123]

    [20]

    Yuan C, Fan L, Li Y B 2001 J. Nanjing I. Meteorol. 24 250 (in Chinese) [袁成, 樊玲, 李亚滨 2001 南京气象学院学报 24 250]

    [21]

    Zheng J H, Chen B J 2007 J. Meteorol. Sci. 27 17 (in Chinese) [郑娇恒, 陈宝君 2007 气象科学 27 17]

    [22]

    Freeman R 1991 Telecommunications Transmission Handbook (3rd Ed.) (Canda: John Wiley & Sons Inc.) p279

    [23]

    Liu X C, Gao T C, Liu L 2013 Infrared Laser Eng. 42 167 (in Chinese) [刘西川, 高太长, 刘磊 2013 红外与激光工程 42 167]

    [24]

    Liu H H, Liu Y H 2012 Chin Phys. B 21 026102

  • [1]

    Gao T C 2012 Meteorol. Hydrol. Eq. 23 1 (in Chinese) [高太长 2012 气象水文装备 23 1]

    [2]

    L D R, Wang P C, Qiu J H, Tao S Y 2003 Chin. J. Atmos. Sci. 27 552 (in Chinese) [吕达仁, 王普才, 邱金恒, 陶诗言 2003 大气科学 27 552]

    [3]

    Liang H H, Xu B X, Liu L P, Ge R S 2005 Adv. Earth Sci. 20 541 (in Chinese) [梁海河, 徐宝祥, 刘黎平, 葛润生 2005 地球科学进展 20 541]

    [4]

    Qie X S, L D R, Chen H B, Wang P C, Duan S, Zhang W X 2008 Chin. J. Atmos. Sci. 32 867 (in Chinese) [郄秀书, 吕达仁, 陈洪滨, 王普才, 段树, 章文星 2008 大气科学 32 867]

    [5]

    Messer H, Zinevich A, Alpert P 2006 Science 312 713

    [6]

    Goldshtein O, Messer H, Zinevich A 2009 IEEE Trans. Signal Proces. 57 1616

    [7]

    Messer H, Zinevich A, Alpert P 2012 IEEE Trans. Instrum. Meas. 15 32

    [8]

    David N, Alpert P, Messer H 2013 Atmos. Res. 131 13

    [9]

    Overeem A, Leijnse H, Uijlenhoet R 2013 Proc. Natl. Acad. Sci. USA 110 2741

    [10]

    Liu X C, Liu L, Gao T C, Ren J P 2013 J. Infrared Millim. Waves 32 379 (in Chinese) [刘西川, 刘磊, 高太长, 任景鹏 2013 红外与毫米波学报 32 379]

    [11]

    Liu X C, Gao T C, Liu L, Zhai D L 2014 Acta Phys. Sin. 63 199201 (in Chinese) [刘西川, 高太长, 刘磊, 翟东力 2014 63 199201]

    [12]

    Jiang S T, Gao T C, Liu X C, Liu L, Liu Z T 2013 Acta Phys. Sin. 62 154303 (in Chinese) [姜世泰, 高太长, 刘西川, 刘磊, 刘志田 2013 62 154303]

    [13]

    Yin M, Jiang S T, Gao T C, Liu X C, Liang M Y, Ge S R, Cao C K 2015 Meteorol. Sci. Technol. 43 1 (in Chinese) [印敏, 姜世泰, 高太长, 刘西川, 梁妙元, 戈书睿, 曹承堃 2015 气象科技 43 1]

    [14]

    Gao T C, Song K, Liu X C, Yin M, Liu L, Jiang S T 2015 Acta Phys. Sin. 64 174301 (in Chinese) [高太长, 宋堃, 刘西川, 印敏, 刘磊, 姜世泰 2015 64 174301]

    [15]

    International Telecommunication Union 2005 Rec. ITU-R p838-3

    [16]

    Zhao H G, Wen J H, Liu Y Z, Yu D L, Wang G, Wen X S 2008 Chin. Phys. B 17 1305

    [17]

    Liu X C, Gao T C, Han X D 2010 J. Meteorol. Sci. 30 42 (in Chinese) [刘西川, 高太长, 韩小冬 2010 气象科学 30 42]

    [18]

    David N, Alpert P, Messer H 2009 Atmos. Chem. Phys. 9 2413

    [19]

    Chen B J, Li Z H, Liu J C, Gong F J 1998 Acta Meteorol. Sin. 56 123 (in Chinese) [陈宝君, 李子华, 刘吉成, 宫福久 1998 气象学报 56 123]

    [20]

    Yuan C, Fan L, Li Y B 2001 J. Nanjing I. Meteorol. 24 250 (in Chinese) [袁成, 樊玲, 李亚滨 2001 南京气象学院学报 24 250]

    [21]

    Zheng J H, Chen B J 2007 J. Meteorol. Sci. 27 17 (in Chinese) [郑娇恒, 陈宝君 2007 气象科学 27 17]

    [22]

    Freeman R 1991 Telecommunications Transmission Handbook (3rd Ed.) (Canda: John Wiley & Sons Inc.) p279

    [23]

    Liu X C, Gao T C, Liu L 2013 Infrared Laser Eng. 42 167 (in Chinese) [刘西川, 高太长, 刘磊 2013 红外与激光工程 42 167]

    [24]

    Liu H H, Liu Y H 2012 Chin Phys. B 21 026102

  • [1] 张毅军, 慕晓冬, 郭乐勐, 张朋, 赵导, 白文华. 一种基于量子线路的支持向量机训练方案.  , 2023, 72(7): 070302. doi: 10.7498/aps.72.20222003
    [2] 梁可达, 刘滕飞, 常哲, 张猛, 李志鑫, 黄松松, 王晶. 基于最小二乘法和支持向量机的海洋内孤立波传播速度反演模型.  , 2023, 72(2): 028301. doi: 10.7498/aps.72.20221633
    [3] 宋堃, 高太长, 刘西川, 印敏, 薛杨. 基于非球形雨衰模型的微波链路雨强反演方法.  , 2017, 66(15): 154301. doi: 10.7498/aps.66.154301
    [4] 赵志刚, 张纯杰, 苟向锋, 桑虎堂. 基于粒子群优化支持向量机的太阳电池温度预测.  , 2015, 64(8): 088801. doi: 10.7498/aps.64.088801
    [5] 高太长, 宋堃, 刘西川, 印敏, 刘磊, 姜世泰. 基于微波链路的路径雨强反演方法及实验研究.  , 2015, 64(17): 174301. doi: 10.7498/aps.64.174301
    [6] 孟庆芳, 陈珊珊, 陈月辉, 冯志全. 基于递归量化分析与支持向量机的癫痫脑电自动检测方法.  , 2014, 63(5): 050506. doi: 10.7498/aps.63.050506
    [7] 于洋, 郝中骐, 李常茂, 郭连波, 李阔湖, 曾庆栋, 李祥友, 任昭, 曾晓雁. 支持向量机算法在激光诱导击穿光谱技术塑料识别中的应用研究.  , 2013, 62(21): 215201. doi: 10.7498/aps.62.215201
    [8] 赵永平, 张丽艳, 李德才, 王立峰, 蒋洪章. 过滤窗最小二乘支持向量机的混沌时间序列预测.  , 2013, 62(12): 120511. doi: 10.7498/aps.62.120511
    [9] 姜世泰, 高太长, 刘西川, 刘磊, 刘志田. 基于微波链路的降雨场反演方法研究.  , 2013, 62(15): 154303. doi: 10.7498/aps.62.154303
    [10] 行鸿彦, 祁峥东, 徐伟. 基于选择性支持向量机集成的海杂波背景中的微弱信号检测.  , 2012, 61(24): 240504. doi: 10.7498/aps.61.240504
    [11] 王芳芳, 张业荣. 基于支持向量机的电磁逆散射方法.  , 2012, 61(8): 084101. doi: 10.7498/aps.61.084101
    [12] 阎晓妹, 刘丁. 基于最小二乘支持向量机的分数阶混沌系统控制.  , 2010, 59(5): 3043-3048. doi: 10.7498/aps.59.3043
    [13] 王革丽, 杨培才, 毛宇清. 基于支持向量机方法对非平稳时间序列的预测.  , 2008, 57(2): 714-719. doi: 10.7498/aps.57.714
    [14] 蔡俊伟, 胡寿松, 陶洪峰. 基于选择性支持向量机集成的混沌时间序列预测.  , 2007, 56(12): 6820-6827. doi: 10.7498/aps.56.6820
    [15] 张家树, 党建亮, 李恒超. 时空混沌序列的局域支持向量机预测.  , 2007, 56(1): 67-77. doi: 10.7498/aps.56.67
    [16] 叶美盈. 基于最小二乘支持向量机建模的混沌系统控制.  , 2005, 54(1): 30-34. doi: 10.7498/aps.54.30
    [17] 叶美盈, 汪晓东, 张浩然. 基于在线最小二乘支持向量机回归的混沌时间序列预测.  , 2005, 54(6): 2568-2573. doi: 10.7498/aps.54.2568
    [18] 崔万照, 朱长纯, 保文星, 刘君华. 基于模糊模型支持向量机的混沌时间序列预测.  , 2005, 54(7): 3009-3018. doi: 10.7498/aps.54.3009
    [19] 刘 涵, 刘 丁, 任海鹏. 基于最小二乘支持向量机的混沌控制.  , 2005, 54(9): 4019-4025. doi: 10.7498/aps.54.4019
    [20] 崔万照, 朱长纯, 保文星, 刘君华. 混沌时间序列的支持向量机预测.  , 2004, 53(10): 3303-3310. doi: 10.7498/aps.53.3303
计量
  • 文章访问数:  5814
  • PDF下载量:  156
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-08
  • 修回日期:  2015-08-05
  • 刊出日期:  2015-12-05

/

返回文章
返回
Baidu
map