-
采用化学气相沉积法系统研究了合成温度和N2/O2流量对生长在碳纤维衬底上的SnO2纳米线形貌及场发射性能的影响规律. 利用扫描电镜(SEM)、透射电镜(TEM), X射线衍射(XRD)及能谱仪(EDS)对产物细致表征, 结果表明, SnO2纳米线长径比随反应温度的升高而增大; 随N2/O2流量比值的增大先增大后变小, 场发射测试表明, 合成温度780 ℃, N2/O2流量比为300 : 3 时SnO2纳米线阵列具有最佳的场发射性能, 开启电场为1.03 V/m, 场强增加到1.68 V/m时, 发射电流密度达0.66 mA/cm2, 亮度约2300 cd/m2.A large amount of tin oxide (SnO2) nanowire arrays were synthesized on the flexible conductive carbon fiber substrate by thermal evaporation of tin powders in a tube furnace. The temperature, as well as the flow rate of the carrier N2 gas and the reaction O2 gas, plays an important role in defining the morphology of the SnO2 nanowires. Morphology and structure of the as-grown SnO2 samples are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD). Results show that all the samples possess a typical rutile structure, and no other impurity phases are observed. The morphology changes from rod to wire with the increase of reaction temperature. Ratio of length to diameter of the nanowires increases first and then decreases with the flow ratio of N2/O2 gas. The optimum synthesis conditions of SnO2 nanowire are: reaction temperature 780 ℃, N2 and O2 flow rates being 300 sccm and 3 sccm respectively. In our growth process, the nanowire grows mainly due to the vapor-liquid-solid (VLS) growth process, but both the VLS process and surface diffusion combined with a preferential growth mechanism play the important role in morphology evolution of the SnO2.Field emission measurements for Samples 1-6 are carried out in a vacuum chamber and a diode plate configuration is used. Relationship between the growth orientation, aspect ratio, density and uniformity of the arrays and field emission performances will be investigated first. Results reveal that the field emission performance of SnO2 nanostructures depends on their morphologies and array density. The turn-on electric field (at the current density of 10 upA/cm2) decreases and the emission site density increases with tin oxide array density, and the turn-on electric field of Sample 5 (synthesized at 780 ℃, nitrogen and oxygen flow rates being 300 sccm and 3 sccm respectively) is about 1.03 V/m at a working distance of 500 m. By comparison, for the turn-on electric fields of the not well-aligned SnO2 nanowire arrays we have 1.58, 2.13, 2.42, 1.82, and 1.97 V/m at 500 m. These behaviors indicate that such an ultralow turn-on field emission and marked enhancement in (~ 4670) can be attributed to the better orientation, the good electric contact with the conducting fiber substrate where they grow, and the weaker field-screening effect. Our results demonstrate that well-aligned nanowire arrays, with excellent field-emission performance, grown on fiber substrate can provide the possibility of application in flexible vacuum electron sources.
-
Keywords:
- chemical vapor deposition /
- nanostructures of tin oxide /
- controllable morphology /
- field emission
[1] Cao G, Lee Y Z, Peng R, Liu Z, Rajaram R, Calderon-Colon X, An L, Wang P, Phan T, Sultana S, Lalush D S, Lu J P, Zhou O 2009 Phys. Med. Biol. 54 2323
[2] Teo K B K, Minoux E, Hudanski L, Peauger F, Schnell J P, Gangloff L, Legagneux P, Dieumegard D, Amaratunga G A J, Milne W I 2005 Nature 437 968
[3] Croci M, Arfaoui I, Stockli T, Chatelain A, Bonard J M 2004 Microelectron J. 35 329
[4] Zhang J M, Du X J, Wang S F, Xu K W 2009 Chin. Phys. B 18 5468
[5] Liu P, Wei Y, Liu K, Liu L, Jiang K L, Fan S S 2012 Nano Lett. 12 2391
[6] Li X, Zhou W M, Liu W H, Wang X L 2015 Chin. Phys. B 24 057102
[7] Ghosh K, Kumar M, Wang H F, Maruyama T, Ando Y 2010 Langmuir 26 5527
[8] Wang Z, Zuo Y L, Li Y, Han X M, Guo X B, Wang J B, Cao B, Xi L, Xue D S 2014 Carbon73 114
[9] Wang J C 2013 Chin. Phys. B 22 068504
[10] Li C, Tian Y, Wang D K, Shi X Z, Hui C, Shen C M, Gao H J 2011 Chin. Phys. B 20 037903
[11] Li Z J, Li W D 2013 Acta Phys. Sin. 62 097902 (in Chinese) [李镇江, 李伟东 2013 ] 62 097902
[12] Gubbala S, Chakrapani V, Kumar V, Sunkara M K 2008 Adv Funct Mater. 18 2411
[13] Kim H, Cho 2008 J. Mater. Chem. 18 771
[14] Wan Q, Huang J, Xie Z, Wang T H, Dattoli E N, Lu W 2008 Appl Phys Lett. 92 102101
[15] Fang X S, Yan J, Hu L F, Liu H, Lee P S 2012 Adv. Funct. Mater. 22 1613
[16] Zeng C L, Tang D S, Liu X H, Hai K, Yang Y, Yuan H J, Xie S S 2007 Acta Phys. Sin. 56 6531 (in Chinese) [曾春来, 唐东升, 刘星辉, 海阔, 羊亿, 袁华军, 解思深 2007 56 6531]
[17] Wang G X, Park J S, Park M S 2009 J Nanosci Nanotechnol. 9 1144
[18] Yuan J J, Li H D, Wang Q L, Zhang X K, Cheng S H, Yu H J, Zhu X R, Xie Y M 2014 Mater. Lett. 118 43
[19] Wang Y L, Guo M, Zhang M, Wang X D 2009 Scripta Mater. 61 23
[20] Qin L P, Xu J Q, Dong X W 2008 Nanotechnol. 19 1857051
[21] Kong X H, Li Y D 2003 Chem. Lett. 32 100
[22] Wang B, Yang Y H, Wang C X, Xu N S, Yang G Wet 2005 J. Appl. Phys. 98 1243031
[23] Zhang Y S, Yu K, Li G D, Peng D Y, Zhang Q X, Xu F, Bai W, Ouyang S X, Zhu Z Q 2006 Mater Lett. 60 3109
[24] Zhang Z, Wu S J, Yu T, Wu T 2007 J. Phys. Chem. C 111 17500
[25] Ma L A, Guo T L 2013 Ceram.Int. 39 6923
[26] Lilach Y, Zhang J P, Moskovits M, Kolmakov A 2005 Nano Lett. 5 2019
[27] Chen Y J, Li Q H, Liang. Y X, Wang T H, Zhao Q X, Yu D P 2004 Appl. Phys.Lett. 85 5682
[28] Luo S H, Chu P K, Di Z F, Zhang M, Liu W L, Lin C L, Fan J Y, Wu X L 2006 Appl. Phys. Lett. 88 013109
[29] Deng KM, Lu H, Shi Z W, Liu Q, Li L 2013 ACS Appl. Mater. Interfaces 5 7845
[30] Li X B, Wang X W, Shen Q, Zheng J, Liu W H, Zhao H, Yang F, Yang H Q 2013 ACS Appl. Mater. Interfaces 5 3033
[31] Jo S H, Wang D Z, Huang J Y, Li W Z, Kempa K, Ren Z F 2004 Appl. Phys.Lett. 85 810
[32] Wu Y Y, Yang P D 2001 J. Am. Chem. Soc. 123 3165
[33] Lee S H, Jo G H, Park W, Lee S, Kim Y S, Cho B K, Lee T, Kim W B 2010 ACS Nano 4 1829
[34] Sun S H, Meng G W, Zhang M G, An X H, Wu G S, Zhang L D 2004 J. Phys. D, Appl. Phys. 37 409
[35] Jin C H, Wang J Y, Wang M S, Su J, Peng L M 2005 Carbon43 1026
[36] Jo S H, Lao J Y, Ren Z F, Farrer R A, Baldacchini T, Fourkas J T 2003 Appl. Phys. Lett. 83 4821
[37] Chavan P G, Badadhe S S, Mulla I S, More M A, Joag D S 2011 Nanoscale 3 1078
[38] Ye Y, Chen T Y, Guo T L, Jiang Y D 2014 Acta Phys. Sin. 63 086802 (in Chinese) [叶芸, 陈填源, 郭太良, 蒋亚东 2014 63 086802]
[39] Xu N S, Huq S E 2005 Mater Sci Eng R Rep 48 47
[40] de Heer WA, Chatelain A, Ugarte D 1995 Science 270 1179
[41] Szuber J, Czempik G, Larciprete R, Adamowicz B 2000 Sens. Actuators. B Chem. 70 177
[42] Wu J, Yu K, Li L J, Xu J W, Shang D J, Xu Y, Zhu Z Q 2008 J. Phys. D: Appl. Phys. 41 185302
[43] Li J J, Chen M M, Tian S B, Jin A Z, Xia X X, Guo C Z 2011 Nanotechnol 22 505601
[44] Ma L A, Guo T L 2009 Mater. Lett. 63 295
[45] Wu J M 2008 Thin Solid Film 517 1289
[46] Yuan J J, Li H D, Wang Q L, Zhang X K, Cheng S H, Yu H J, Zhu X R, Xie Y M 2014 Mater. Lett. 118 43
-
[1] Cao G, Lee Y Z, Peng R, Liu Z, Rajaram R, Calderon-Colon X, An L, Wang P, Phan T, Sultana S, Lalush D S, Lu J P, Zhou O 2009 Phys. Med. Biol. 54 2323
[2] Teo K B K, Minoux E, Hudanski L, Peauger F, Schnell J P, Gangloff L, Legagneux P, Dieumegard D, Amaratunga G A J, Milne W I 2005 Nature 437 968
[3] Croci M, Arfaoui I, Stockli T, Chatelain A, Bonard J M 2004 Microelectron J. 35 329
[4] Zhang J M, Du X J, Wang S F, Xu K W 2009 Chin. Phys. B 18 5468
[5] Liu P, Wei Y, Liu K, Liu L, Jiang K L, Fan S S 2012 Nano Lett. 12 2391
[6] Li X, Zhou W M, Liu W H, Wang X L 2015 Chin. Phys. B 24 057102
[7] Ghosh K, Kumar M, Wang H F, Maruyama T, Ando Y 2010 Langmuir 26 5527
[8] Wang Z, Zuo Y L, Li Y, Han X M, Guo X B, Wang J B, Cao B, Xi L, Xue D S 2014 Carbon73 114
[9] Wang J C 2013 Chin. Phys. B 22 068504
[10] Li C, Tian Y, Wang D K, Shi X Z, Hui C, Shen C M, Gao H J 2011 Chin. Phys. B 20 037903
[11] Li Z J, Li W D 2013 Acta Phys. Sin. 62 097902 (in Chinese) [李镇江, 李伟东 2013 ] 62 097902
[12] Gubbala S, Chakrapani V, Kumar V, Sunkara M K 2008 Adv Funct Mater. 18 2411
[13] Kim H, Cho 2008 J. Mater. Chem. 18 771
[14] Wan Q, Huang J, Xie Z, Wang T H, Dattoli E N, Lu W 2008 Appl Phys Lett. 92 102101
[15] Fang X S, Yan J, Hu L F, Liu H, Lee P S 2012 Adv. Funct. Mater. 22 1613
[16] Zeng C L, Tang D S, Liu X H, Hai K, Yang Y, Yuan H J, Xie S S 2007 Acta Phys. Sin. 56 6531 (in Chinese) [曾春来, 唐东升, 刘星辉, 海阔, 羊亿, 袁华军, 解思深 2007 56 6531]
[17] Wang G X, Park J S, Park M S 2009 J Nanosci Nanotechnol. 9 1144
[18] Yuan J J, Li H D, Wang Q L, Zhang X K, Cheng S H, Yu H J, Zhu X R, Xie Y M 2014 Mater. Lett. 118 43
[19] Wang Y L, Guo M, Zhang M, Wang X D 2009 Scripta Mater. 61 23
[20] Qin L P, Xu J Q, Dong X W 2008 Nanotechnol. 19 1857051
[21] Kong X H, Li Y D 2003 Chem. Lett. 32 100
[22] Wang B, Yang Y H, Wang C X, Xu N S, Yang G Wet 2005 J. Appl. Phys. 98 1243031
[23] Zhang Y S, Yu K, Li G D, Peng D Y, Zhang Q X, Xu F, Bai W, Ouyang S X, Zhu Z Q 2006 Mater Lett. 60 3109
[24] Zhang Z, Wu S J, Yu T, Wu T 2007 J. Phys. Chem. C 111 17500
[25] Ma L A, Guo T L 2013 Ceram.Int. 39 6923
[26] Lilach Y, Zhang J P, Moskovits M, Kolmakov A 2005 Nano Lett. 5 2019
[27] Chen Y J, Li Q H, Liang. Y X, Wang T H, Zhao Q X, Yu D P 2004 Appl. Phys.Lett. 85 5682
[28] Luo S H, Chu P K, Di Z F, Zhang M, Liu W L, Lin C L, Fan J Y, Wu X L 2006 Appl. Phys. Lett. 88 013109
[29] Deng KM, Lu H, Shi Z W, Liu Q, Li L 2013 ACS Appl. Mater. Interfaces 5 7845
[30] Li X B, Wang X W, Shen Q, Zheng J, Liu W H, Zhao H, Yang F, Yang H Q 2013 ACS Appl. Mater. Interfaces 5 3033
[31] Jo S H, Wang D Z, Huang J Y, Li W Z, Kempa K, Ren Z F 2004 Appl. Phys.Lett. 85 810
[32] Wu Y Y, Yang P D 2001 J. Am. Chem. Soc. 123 3165
[33] Lee S H, Jo G H, Park W, Lee S, Kim Y S, Cho B K, Lee T, Kim W B 2010 ACS Nano 4 1829
[34] Sun S H, Meng G W, Zhang M G, An X H, Wu G S, Zhang L D 2004 J. Phys. D, Appl. Phys. 37 409
[35] Jin C H, Wang J Y, Wang M S, Su J, Peng L M 2005 Carbon43 1026
[36] Jo S H, Lao J Y, Ren Z F, Farrer R A, Baldacchini T, Fourkas J T 2003 Appl. Phys. Lett. 83 4821
[37] Chavan P G, Badadhe S S, Mulla I S, More M A, Joag D S 2011 Nanoscale 3 1078
[38] Ye Y, Chen T Y, Guo T L, Jiang Y D 2014 Acta Phys. Sin. 63 086802 (in Chinese) [叶芸, 陈填源, 郭太良, 蒋亚东 2014 63 086802]
[39] Xu N S, Huq S E 2005 Mater Sci Eng R Rep 48 47
[40] de Heer WA, Chatelain A, Ugarte D 1995 Science 270 1179
[41] Szuber J, Czempik G, Larciprete R, Adamowicz B 2000 Sens. Actuators. B Chem. 70 177
[42] Wu J, Yu K, Li L J, Xu J W, Shang D J, Xu Y, Zhu Z Q 2008 J. Phys. D: Appl. Phys. 41 185302
[43] Li J J, Chen M M, Tian S B, Jin A Z, Xia X X, Guo C Z 2011 Nanotechnol 22 505601
[44] Ma L A, Guo T L 2009 Mater. Lett. 63 295
[45] Wu J M 2008 Thin Solid Film 517 1289
[46] Yuan J J, Li H D, Wang Q L, Zhang X K, Cheng S H, Yu H J, Zhu X R, Xie Y M 2014 Mater. Lett. 118 43
计量
- 文章访问数: 5479
- PDF下载量: 137
- 被引次数: 0