搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

有机半导体薄膜生长原位实时测量方法的研究

徐佳佳 胡春光 陈雪娇 张雷 傅星 胡小唐

引用本文:
Citation:

有机半导体薄膜生长原位实时测量方法的研究

徐佳佳, 胡春光, 陈雪娇, 张雷, 傅星, 胡小唐

Study on in-situ real-time measurement for thin film growth of organic semiconductors

Xu Jia-Jia, Hu Chun-Guang, Chen Xue-Jiao, Zhang Lei, Fu Xing, Hu Xiao-Tang
PDF
导出引用
  • 针对原位实时监测有机半导体薄膜生长情况的需求, 提出了差分反射光谱法与场效应晶体管法结合的光电联合测量方法, 设计研制了测量系统. 以并五苯有机分子为例, 通过自制底栅底接触式场效应管微结构, 实验测试了热蒸发法生长导电膜层过程中光电信号的演变与相互关联. 光谱信号显示, 并五苯以薄膜态结构进行生长, 光谱随生长进程变化显著. 实验数据与四相结构模型仿真结果的良好吻合, 表明因薄膜增厚引起干涉条件的改变是光谱变化的主因, 由此推算出薄膜生长速率为0.23 nm/min. 当薄膜等效厚度达到28 nm时, 场效应管的导电性显著增强, 标志着并五苯有效传输层的形成. 此后, 薄膜厚度持续增加, 但测试电流增长缓慢, 说明该结构进入电学特性饱和区. 光电联合法不仅有助于研究有机半导体薄膜的光谱信息、电学特性和薄膜结构之间的相互对应关系, 也为发展原位监测有机半导体薄膜制备过程, 探索最佳工艺提供了新的研究手段.
    We propose an approach for in-situ real-time measuring the optical and electric properties of a thin film in parallel during the process of growth. The method is developed based on two techniques: differential reflectance spectroscopy (DRS) and field effect transistor (FET) structure based electrical characteristics testing method. In order to demonstrate the performance of the method, FETs with a bottom-gate structure are manufactured and the pentacene organic thin film is deposited by vacuum thermal evaporation as a transport layer on the top of the transistor, i.e. the insulator substrate of SiO2. The optical and electrical properties of the organic thin film are in-situ investigated during its growth. As obtained from the optical spectra, the DRS signal moves up and down along the wavelength. Its fluctuation amplitude increases quickly and is very sensitive to the variation of the thickness of the top most film since the shutter of the molecular evaporation source is open. A good agreement between the experimental data and the computational results with a four-layer structure model of Si/SiO2/pentacene/air suggests that the DRS signal here is mainly due to the interference that exists in the multilayer interfaces. In addition, there are two characteristic peaks at 629 nm (1.97 eV) and 673 nm (1.84 eV) appearing occurs clearly in the DRS spectra at the initial stage of the growth. It means that the pentacene layer forms a thin film phase structure. Furthermore, the growth rate is evaluated to be 0.23 nm/min. When the effective thickness of the pentacene layer reaches 28 nm, calculated from the growth rate and the measured time, the conductivity of the organic FET becomes noticeable. It implies that an electrical conducting layer is already formed. After that, the thickness of the conducting layer continuously increases, while the current between the drain and the source increases slowly and turns to be saturated. After a 15-hour film growth, the sample has a threshold voltage of -20 V and the charge carrier mobility is 3.1×10-3 cm2/(V· s). These data confirm that the sample is an FET although its electronic properties are not good enough. These results show that the proposed approach is a useful measurement tool to build the relationships among the data of the optical spectrum, the electrical property, and the structure of the thin films. Hence, it is valuable for both the explanation of the growth mechanism of the thin film in research and the optimization of its preparation process in industry.
      通信作者: 胡春光, cghu@tju.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61008028)、全国博士学位论文作者专项资金(批准号: 201140)、教育部新世纪优秀人才支持计划(批准号: 11-0366)和“111”引智计划(批准号: B07014)资助的课题.
      Corresponding author: Hu Chun-Guang, cghu@tju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61008028), the Foundation for the Author of National Excellent Doctoral Dissertation of China (FANEDD) (Grant No. 201140), the Program for New Century Excellent Talents in University of Ministry of Education of China (Grant No. 11-0366), and the 111 project (Grant No. B07014).
    [1]

    Podzorov V, Pudalov V M, Gershenson M E 2003 Appl. Phys. Lett. 82 1739

    [2]

    Crone B, Dodabalapur A, Lin Y Y, Filas R W, Bao Z, LaDuca A, Sarpeshkar R, Katz H E, Li W 2000 Nature 403 521

    [3]

    Drury C J, Mutsaers C M J, Hart C M, Matters M, Leeuw D M 1998 Appl. Phys. Lett. 73 108

    [4]

    Yu P Y, Cardona M 1996 Semiconductor Science and Technology (Berlin: Springer Verlag) pp103-110

    [5]

    Karl N 2003 Synth. Met. 13 133

    [6]

    Wu S K, Wang P F 2009 Introduction to organic electronics (Beijing: Chemical Industry Press) pp5-6 (in Chinese) [吴世康, 汪鹏飞 2009 有机电子学概论 (北京: 化学工业出版社) 第 5–6 页]

    [7]

    Yan D H, Wang H P, Du B X 2008 Introduction to organic semiconductor heterojunction (Beijing: Science Press) pp88-95 (in Chinese) [闫东航, 王海波, 杜宝勋 2008 有机半导体异质结导论(北京: 科学出版社)第 88–95 页]

    [8]

    Hu W P 2011 Organic Field Effect Transistor (Beijing: Science Press) pp181-188 (in Chinese) [胡文平 2011 有机场效应晶体管(北京: 科学出版社)第 181–188 页]

    [9]

    Li H Q, Yu J S, Huang W, Shi W, Huang J 2014 Chin. Phys. B 23 038505

    [10]

    Shehu A, Quiroga S D, D'Angelo P, Albonetti C, Borgatti F, Murgia M, Scorzoni A, Stoliar P, Biscarini F 2010 Phy. Rev. Lett. 104 246602

    [11]

    Jiang L, Dong H L, Meng Q, Li H X, He M, Wei Z M, He Y D, Hu W P 2011 Adv. Mater. 23 2059

    [12]

    J. H. Schon, Ch. Kloc 2001 Appl. Phys. Lett. 78 3538

    [13]

    S. P. Park, S. S. Kim 2002 Appl. Phys. Lett. 80 2872

    [14]

    Arian Shehu, Santiago D. Quiroga, Pasquale D'Angelo, Cristiano Albonetti, Francesco Borgatti, Mauro Murgia, Andrea Scorzoni, Pablo Stoliar, Fabio Biscarini 2010 Phys. Rev. Lett. 104 246602

    [15]

    Yang D, Zhang L, Yang S Y, Zou B S 2015 Acta Phys. Sin. 64 108503 (in Chinese) [杨丹, 张丽, 杨盛谊, 邹炳锁 2015 64 108503]

    [16]

    Reese C, Bao Z N 2007 Mater. Today 10 20

    [17]

    Zhang D, Zhao K, Deng J C 2012 J. Optoelectronics. Laser 23 2273 (in Chinese) [张达, 赵恺, 邓家春 2012 光电子. 激光 23 2273]

    [18]

    Forker R, Gruenewald M, Fritz T 2012 Annual Reports Section C (Physical Chemistry) 108 34

    [19]

    Zhang L 2014 Ph. D. Dissertation (Tianjin: Tianjin University) (in Chinese) [张雷 2014 博士学位论文 (天津: 天津大学)]

    [20]

    Borenszten Y 2005 Phys. Stat. Sol. 202 1313

    [21]

    Yao Y, Hu C G, Xu Z Y, Zhang L, Fu X, Hu X T 2015 Spectrosc. Spect. Anal. 35 1320 (in Chinese) [姚姚, 胡春光, 徐臻圆, 张雷, 傅星, 胡小唐 2015 光谱学与光谱分析 35 1320]

    [22]

    Philipp H R 1998 Handbook of Optical Constants of Solids (Vol. 1) (San Diego: Academic Press) pp719-763

    [23]

    Auslender M, Hava S 1998 Handbook of Optical Constants of Solids (Vol. 3) (San Diego: Academic Press) pp155-186

    [24]

    Faltermeier D, Gompf B, Dressel M, Tripathi A K, Pflaum J 2006 Phy. Rev. B 74 125416

    [25]

    Sun Q J, Xu Z, Zhao S L, Zhang F J, Gao L Y 2011 Chin. Phys. B 20 017306

    [26]

    Qi Q, Yu A F, Jiang P, Jiang C 2009 Appl. Surf. Sci. 255 5096

  • [1]

    Podzorov V, Pudalov V M, Gershenson M E 2003 Appl. Phys. Lett. 82 1739

    [2]

    Crone B, Dodabalapur A, Lin Y Y, Filas R W, Bao Z, LaDuca A, Sarpeshkar R, Katz H E, Li W 2000 Nature 403 521

    [3]

    Drury C J, Mutsaers C M J, Hart C M, Matters M, Leeuw D M 1998 Appl. Phys. Lett. 73 108

    [4]

    Yu P Y, Cardona M 1996 Semiconductor Science and Technology (Berlin: Springer Verlag) pp103-110

    [5]

    Karl N 2003 Synth. Met. 13 133

    [6]

    Wu S K, Wang P F 2009 Introduction to organic electronics (Beijing: Chemical Industry Press) pp5-6 (in Chinese) [吴世康, 汪鹏飞 2009 有机电子学概论 (北京: 化学工业出版社) 第 5–6 页]

    [7]

    Yan D H, Wang H P, Du B X 2008 Introduction to organic semiconductor heterojunction (Beijing: Science Press) pp88-95 (in Chinese) [闫东航, 王海波, 杜宝勋 2008 有机半导体异质结导论(北京: 科学出版社)第 88–95 页]

    [8]

    Hu W P 2011 Organic Field Effect Transistor (Beijing: Science Press) pp181-188 (in Chinese) [胡文平 2011 有机场效应晶体管(北京: 科学出版社)第 181–188 页]

    [9]

    Li H Q, Yu J S, Huang W, Shi W, Huang J 2014 Chin. Phys. B 23 038505

    [10]

    Shehu A, Quiroga S D, D'Angelo P, Albonetti C, Borgatti F, Murgia M, Scorzoni A, Stoliar P, Biscarini F 2010 Phy. Rev. Lett. 104 246602

    [11]

    Jiang L, Dong H L, Meng Q, Li H X, He M, Wei Z M, He Y D, Hu W P 2011 Adv. Mater. 23 2059

    [12]

    J. H. Schon, Ch. Kloc 2001 Appl. Phys. Lett. 78 3538

    [13]

    S. P. Park, S. S. Kim 2002 Appl. Phys. Lett. 80 2872

    [14]

    Arian Shehu, Santiago D. Quiroga, Pasquale D'Angelo, Cristiano Albonetti, Francesco Borgatti, Mauro Murgia, Andrea Scorzoni, Pablo Stoliar, Fabio Biscarini 2010 Phys. Rev. Lett. 104 246602

    [15]

    Yang D, Zhang L, Yang S Y, Zou B S 2015 Acta Phys. Sin. 64 108503 (in Chinese) [杨丹, 张丽, 杨盛谊, 邹炳锁 2015 64 108503]

    [16]

    Reese C, Bao Z N 2007 Mater. Today 10 20

    [17]

    Zhang D, Zhao K, Deng J C 2012 J. Optoelectronics. Laser 23 2273 (in Chinese) [张达, 赵恺, 邓家春 2012 光电子. 激光 23 2273]

    [18]

    Forker R, Gruenewald M, Fritz T 2012 Annual Reports Section C (Physical Chemistry) 108 34

    [19]

    Zhang L 2014 Ph. D. Dissertation (Tianjin: Tianjin University) (in Chinese) [张雷 2014 博士学位论文 (天津: 天津大学)]

    [20]

    Borenszten Y 2005 Phys. Stat. Sol. 202 1313

    [21]

    Yao Y, Hu C G, Xu Z Y, Zhang L, Fu X, Hu X T 2015 Spectrosc. Spect. Anal. 35 1320 (in Chinese) [姚姚, 胡春光, 徐臻圆, 张雷, 傅星, 胡小唐 2015 光谱学与光谱分析 35 1320]

    [22]

    Philipp H R 1998 Handbook of Optical Constants of Solids (Vol. 1) (San Diego: Academic Press) pp719-763

    [23]

    Auslender M, Hava S 1998 Handbook of Optical Constants of Solids (Vol. 3) (San Diego: Academic Press) pp155-186

    [24]

    Faltermeier D, Gompf B, Dressel M, Tripathi A K, Pflaum J 2006 Phy. Rev. B 74 125416

    [25]

    Sun Q J, Xu Z, Zhao S L, Zhang F J, Gao L Y 2011 Chin. Phys. B 20 017306

    [26]

    Qi Q, Yu A F, Jiang P, Jiang C 2009 Appl. Surf. Sci. 255 5096

  • [1] 汪帆帆, 陈栋, 袁军, 张珠峰, 姜涛, 周骏. Sb/SnC范德瓦耳斯异质结光电性质的层间转角依赖性及其应用.  , 2024, 73(22): 227101. doi: 10.7498/aps.73.20241138
    [2] 孙婷钰, 吴量, 何贤娟, 姜楠, 周文哲, 欧阳方平. 应变和电场对Ga2SeTe/In2Se3异质结电子结构和光学性质的影响.  , 2023, 72(7): 076301. doi: 10.7498/aps.72.20222250
    [3] 安涛, 薛佳伟, 王永强. 基于苯并二噻吩聚合物所制备的三元光电探测器的特性.  , 2021, 70(5): 058801. doi: 10.7498/aps.70.20201185
    [4] 息剑峰, 李宝河, 刘丹, 李熊, 耿爱丛, 李笑. LaAlO3/SrTiO3界面增强光伏效应.  , 2021, 70(8): 086802. doi: 10.7498/aps.70.20201330
    [5] 王雪婷, 付钰豪, 那广仁, 李红东, 张立军. 钡作为掺杂元素调控铅基钙钛矿材料的毒性和光电特性.  , 2019, 68(15): 157101. doi: 10.7498/aps.68.20190596
    [6] 贾婉丽, 周淼, 王馨梅, 纪卫莉. Fe掺杂GaN光电特性的第一性原理研究.  , 2018, 67(10): 107102. doi: 10.7498/aps.67.20172290
    [7] 聂国政, 邹代峰, 钟春良, 许英. 内嵌CuO薄膜对并五苯薄膜晶体管性能的改善.  , 2015, 64(22): 228502. doi: 10.7498/aps.64.228502
    [8] 杨丹, 张丽, 杨盛谊, 邹炳锁. 基于垂直晶体管结构的低电压并五苯光电探测器.  , 2015, 64(10): 108503. doi: 10.7498/aps.64.108503
    [9] 刘瑞兰, 王徐亮, 唐超. 基于粒子群算法的有机半导体NPB传输特性辨识.  , 2014, 63(2): 028105. doi: 10.7498/aps.63.028105
    [10] 李振武. 单壁碳纳米管膜及其三聚氰胺甲醛树脂复合材料的光电特性.  , 2014, 63(10): 106101. doi: 10.7498/aps.63.106101
    [11] 袁文瑞, 李毅, 王晓华, 郑鸿柱, 陈少娟, 陈建坤, 孙瑶, 唐佳茵, 刘飞, 郝如龙, 方宝英, 肖寒. VO2/AZO复合薄膜的制备及其光电特性研究.  , 2014, 63(21): 218101. doi: 10.7498/aps.63.218101
    [12] 何琼, 许向东, 温粤江, 蒋亚东, 敖天宏, 樊泰君, 黄龙, 马春前, 孙自强. 溶胶凝胶制备氧化钒薄膜的生长机理及光电特性.  , 2013, 62(5): 056802. doi: 10.7498/aps.62.056802
    [13] 余志强. 硅基外延OsSi2电子结构及光电特性研究.  , 2012, 61(21): 217102. doi: 10.7498/aps.61.217102
    [14] 张治国. 紫外波段高透过率铜铟掺杂SnO2薄膜的研究.  , 2010, 59(11): 8172-8177. doi: 10.7498/aps.59.8172
    [15] 袁广才, 徐 征, 赵谡玲, 张福俊, 姜薇薇, 黄金昭, 宋丹丹, 朱海娜, 黄金英, 徐叙瑢. 对以并五苯和酞菁铜为不同有源层的有机薄膜晶体管特性研究.  , 2008, 57(9): 5911-5917. doi: 10.7498/aps.57.5911
    [16] 郭树旭, 王 伟, 石家纬. 并五苯同质异相体中分子间势能与能带计算.  , 2007, 56(7): 4085-4088. doi: 10.7498/aps.56.4085
    [17] 郝会颖, 孔光临, 曾湘波, 许 颖, 刁宏伟, 廖显伯. 非晶/微晶相变域硅薄膜及其太阳能电池.  , 2005, 54(7): 3327-3331. doi: 10.7498/aps.54.3327
    [18] 吴 悦, 黄 寒, 毛宏颖, 杨新国, 张建华, 汪 茫, 李海洋, 何丕模, 鲍世宁. 有机半导体在金属Ru(0001)上的界面特性研究.  , 2004, 53(5): 1604-1610. doi: 10.7498/aps.53.1604
    [19] 王业亮, 时东霞, 季 威, 杜世萱, 郭海明, 刘虹雯, 高鸿钧. 并五苯分子在Ag(110)表面成膜过程中的结构研究.  , 2004, 53(3): 877-882. doi: 10.7498/aps.53.877
    [20] 汪六九, 朱美芳, 刘丰珍, 刘金龙, 韩一琴. 热丝化学气相沉积技术低温制备多晶硅薄膜的结构与光电特性.  , 2003, 52(11): 2934-2938. doi: 10.7498/aps.52.2934
计量
  • 文章访问数:  6542
  • PDF下载量:  178
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-05
  • 修回日期:  2015-08-14
  • 刊出日期:  2015-12-05

/

返回文章
返回
Baidu
map