搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于重采样技术的调频连续波激光绝对测距高精度及快速测量方法研究

孟祥松 张福民 曲兴华

引用本文:
Citation:

基于重采样技术的调频连续波激光绝对测距高精度及快速测量方法研究

孟祥松, 张福民, 曲兴华

High precision and fast method for absolute distance measurement based on resampling technique used in FM continuous wave laser ranging

Meng Xiang-Song, Zhang Fu-Min, Qu Xing-Hua
PDF
导出引用
  • 调频连续波激光测距方法可以实现高精度的大尺寸绝对距离测量, 且测量过程无需合作目标, 在大空间坐标精密测量领域有很高的研究价值. 而如何提高测量分辨率和实用化一直是近年来调频连续波激光绝对测距研究的热点. 本文研究了调频连续波激光测距的原理, 基于双光路调频连续波激光测距系统, 提出了通过信号拼接提高测量分辨率的信号处理优化方案, 该方案可以提高测距分辨率, 且可以降低对激光器的性能要求; 提出了可实现高速测量的简易测量方法. 设计加工了双光路光纤调频连续波激光测距系统, 利用该系统进行了测距分辨率及测距误差标定实验, 实验结果表明: 优化方案可以有效地提高测量分辨率和测量效率, 在26 m测量范围内, 测距分辨率达到了50 m, 测距误差不超过100 m; 快速测量方案有较高实用价值.
    Frequency modulated continuous wave (FMCW) laser ranging is one of the most interesting techniques for precision distance metrology. It is a promising candidate for absolute distance measurement at large standoff distances (10 to 100 m) with high precision and accuracy, and no cooperation target is needed during the measuring process. How to improve the measurement resolution in practice has been the research focus of the FMCW laser ranging in recent years.FMCW laser ranging system uses the method which may convert the measurement of flight time to the frequency measurement, while the ranging resolution can be determined by the tuning range of the optical frequency sweep in theory. The main impact-factor that reduces the resolution is the tuning nonlinearity of the laser source, which may cause an amount of error points within the sampling signal. So a dual-interferometric FMCW laser ranging system is adopted in this paper. Compared to the traditional Michelson scheme, an assistant interferometer is added. The assistant interferometer has an all-fiber optical Mach-Zehnder configuration, and the delay distance is at least 2 times longer than OPD (optical path difference) of the main interferometer. Because it provides the reference length, the length of the fiber must remain unchanged. The interference signal is obtained on the photodetector. At the time points of every peak and bottom of the auxiliary interferometer signal, the beating signal from the main interferometer is re-sampled. The original signal is not the equal time intervals, while the re-sampled signal is the equal optical frequency intervals. Based on the property of the re-sampled signal, a method by splicing the re-sampled signal to optimize the signal processing is proposed, by which the tuning range of the laser source limitation can be broken and high precision can be easily obtained. Also, a simple high-speed measuring method is proposed.Based on all the above principles, the two-fiber optical frequency-modulated continuous wave laser ranging system is designed. The delay fiber in the FMCW laser ranging system is 40.8 m long, and the tuning speed and tuning range of the laser source are set to 10 nm/s and 40 nm respectively. Experiments show that the optimization method can effectively improve the measurement resolution and measuring efficiency; in the 26 measuring ranges, 50 m resolution can be easily obtained and the error is less than 100 m.
      通信作者: 张福民, zhangfumin@tju.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51327006, 51275350)和高等学校博士学科点专项科研基金(批准编号: 20120032130002)资助的课题.
      Corresponding author: Zhang Fu-Min, zhangfumin@tju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51327006, 51275350), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120032130002).
    [1]

    Liu Z X, Zhu J G, Yang L H, Liu H Q, Wu J, Xue B 2013 Meas. Sci. Technol. 24 105004

    [2]

    Wu H, Zhang F, Cao S, Xing S, Qu X 2014 Opt. Express 22 10380

    [3]

    Liao S S, Yang T, Dong J J 2014 Chin. Phys. B 23 073201

    [4]

    Wu H, Zhang F, Li J, Cao S, Meng X, Qu X 2015 Appl. Opt. 54 5581

    [5]

    Roos P A, Reibel R R, Berg T, Kaylor B, Barber Z W, Babbitt W R 2009 Opt. Lett. 34 3692

    [6]

    Wang G C, Yan S H, Yang J, Lin C B, Yang D X, Zou P F 2013 Acta Phys. Sin. 62 070601 (in Chinese) [王国超, 颜树华, 杨俊, 林存宝, 杨东兴, 邹鹏飞 2013 62 070601]

    [7]

    Cabral A, Rebordão J 2007 Opt. Engineering. 46 073602

    [8]

    Li Z D, Jiang Y S, Snag F, Wnag L C, Deng S G, Xin Y, Guo J P 2011 Acta Optica Sinica 31 0314001 (in Chinese) [李志栋, 江月松, 桑 峰, 王林春, 邓士光, 辛 遥, 郭泾平 2011 光学学报 31 0314001]

    [9]

    Roos P A, Reibel R R, Berg T, Kaylor B, Barber Z W, Babbitt W R 2010 Opt. Lett. 34 3692

    [10]

    Satyan N, Vasilyev A, Rakuljic G, Leyva V, Yariv A 2009 Opt. Express 17 15991

    [11]

    Iiyama K, Matsui S, Kobayashi T, Maruyama T 2011 IEEE Photonics Technol. Lett. 23 703

    [12]

    Baumann E, Giorgetta F R, Coddington I, Sinclair L C, Knabe K, Swann W C, Newbury N R 2013 Opt. Lett. 38 2026

    [13]

    Shi G, Zhang F M, Qu X H, Meng X S 2014 Acta Phys. Sin. 63 184209 (in Chinese) [时光, 张福民, 曲兴华, 孟祥松 2014 63 184209]

    [14]

    Shi G, Zhang F, Qu X, Meng X 2014 Opt. Engineering 53 122402

  • [1]

    Liu Z X, Zhu J G, Yang L H, Liu H Q, Wu J, Xue B 2013 Meas. Sci. Technol. 24 105004

    [2]

    Wu H, Zhang F, Cao S, Xing S, Qu X 2014 Opt. Express 22 10380

    [3]

    Liao S S, Yang T, Dong J J 2014 Chin. Phys. B 23 073201

    [4]

    Wu H, Zhang F, Li J, Cao S, Meng X, Qu X 2015 Appl. Opt. 54 5581

    [5]

    Roos P A, Reibel R R, Berg T, Kaylor B, Barber Z W, Babbitt W R 2009 Opt. Lett. 34 3692

    [6]

    Wang G C, Yan S H, Yang J, Lin C B, Yang D X, Zou P F 2013 Acta Phys. Sin. 62 070601 (in Chinese) [王国超, 颜树华, 杨俊, 林存宝, 杨东兴, 邹鹏飞 2013 62 070601]

    [7]

    Cabral A, Rebordão J 2007 Opt. Engineering. 46 073602

    [8]

    Li Z D, Jiang Y S, Snag F, Wnag L C, Deng S G, Xin Y, Guo J P 2011 Acta Optica Sinica 31 0314001 (in Chinese) [李志栋, 江月松, 桑 峰, 王林春, 邓士光, 辛 遥, 郭泾平 2011 光学学报 31 0314001]

    [9]

    Roos P A, Reibel R R, Berg T, Kaylor B, Barber Z W, Babbitt W R 2010 Opt. Lett. 34 3692

    [10]

    Satyan N, Vasilyev A, Rakuljic G, Leyva V, Yariv A 2009 Opt. Express 17 15991

    [11]

    Iiyama K, Matsui S, Kobayashi T, Maruyama T 2011 IEEE Photonics Technol. Lett. 23 703

    [12]

    Baumann E, Giorgetta F R, Coddington I, Sinclair L C, Knabe K, Swann W C, Newbury N R 2013 Opt. Lett. 38 2026

    [13]

    Shi G, Zhang F M, Qu X H, Meng X S 2014 Acta Phys. Sin. 63 184209 (in Chinese) [时光, 张福民, 曲兴华, 孟祥松 2014 63 184209]

    [14]

    Shi G, Zhang F, Qu X, Meng X 2014 Opt. Engineering 53 122402

  • [1] 周强, 吴腾飞, 曾周末, 邾继贵. 基于双向吸收光谱精准标定的光频扫描干涉绝对测距.  , 2024, 73(17): 170601. doi: 10.7498/aps.73.20240840
    [2] 梁旭, 林嘉睿, 吴腾飞, 赵晖, 邾继贵. 重复频率倍增光频梳时域互相关绝对测距.  , 2022, 71(9): 090602. doi: 10.7498/aps.71.20212073
    [3] 徐昕阳, 赵海涵, 钱治文, 刘超, 翟京生, 吴翰钟. 动态啁啾脉冲干涉的快速绝对距离测量.  , 2021, 70(22): 220601. doi: 10.7498/aps.70.20202149
    [4] 王国超, 李星辉, 颜树华, 谭立龙, 管文良. 基于飞秒光梳多路同步锁相的多波长干涉实时绝对测距及其非模糊度量程分析.  , 2021, 70(4): 040601. doi: 10.7498/aps.70.20201225
    [5] 夏文泽, 刘洋, 赫明钊, 曹士英, 杨伟雷, 张福民, 缪东晶, 李建双. 双光梳非线性异步光学采样测距中关键参数的数值分析.  , 2021, 70(18): 180601. doi: 10.7498/aps.70.20210565
    [6] 赵显宇, 曲兴华, 陈嘉伟, 郑继辉, 王金栋, 张福民. 一种基于电光调制光频梳光谱干涉的绝对测距方法.  , 2020, 69(9): 090601. doi: 10.7498/aps.69.20200081
    [7] 伍洲, 张文喜, 相里斌, 李杨, 孔新新. 频差偏差对全视场外差测量精度的影响.  , 2018, 67(2): 020601. doi: 10.7498/aps.67.20171837
    [8] 彭博, 曲兴华, 张福民, 张天宇, 张铁犁, 刘晓旭, 谢阳. 飞秒脉冲非对称互相关绝对测距.  , 2018, 67(21): 210601. doi: 10.7498/aps.67.20181274
    [9] 潘浩, 曲兴华, 史春钊, 李雅婷, 张福民. 激光调频连续波测距的精度评定方法研究.  , 2018, 67(9): 090201. doi: 10.7498/aps.67.20180142
    [10] 廖磊, 易旺民, 杨再华, 吴冠豪. 基于合成波长法的飞秒激光外差干涉测距方法.  , 2016, 65(14): 140601. doi: 10.7498/aps.65.140601
    [11] 刘亭洋, 张福民, 吴翰钟, 李建双, 石永强, 曲兴华. 光学频率梳啁啾干涉实现绝对距离测量.  , 2016, 65(2): 020601. doi: 10.7498/aps.65.020601
    [12] 吴翰钟, 曹士英, 张福民, 曲兴华. 光学频率梳基于光谱干涉实现绝对距离测量.  , 2015, 64(2): 020601. doi: 10.7498/aps.64.020601
    [13] 吴翰钟, 曹士英, 张福民, 邢书剑, 曲兴华. 一种光学频率梳绝对测距的新方法.  , 2014, 63(10): 100601. doi: 10.7498/aps.63.100601
    [14] 时光, 张福民, 曲兴华, 孟祥松. 高分辨率调频连续波激光绝对测距研究.  , 2014, 63(18): 184209. doi: 10.7498/aps.63.184209
    [15] 邢书剑, 张福民, 曹士英, 王高文, 曲兴华. 飞秒光频梳的任意长绝对测距.  , 2013, 62(17): 170603. doi: 10.7498/aps.62.170603
    [16] 彭京思, 彭虎. 一种适用于超声多普勒血流速度测量的混沌调频连续波的研究.  , 2012, 61(24): 248701. doi: 10.7498/aps.61.248701
    [17] 张丽琼, 李岩, 朱敏昊, 张继涛. 法-珀干涉绝对距离测量中的声光移频器双通道配置方法.  , 2012, 61(18): 180701. doi: 10.7498/aps.61.180701
    [18] 张宏超, 陆建, 倪晓武. 干涉法诊断由纳秒激光诱导产生的大气等离子体的电子密度.  , 2009, 58(6): 4034-4040. doi: 10.7498/aps.58.4034
    [19] 朱常兴, 冯焱颖, 叶雄英, 周兆英, 周永佳, 薛洪波. 利用原子干涉仪的相位调制进行绝对转动测量.  , 2008, 57(2): 808-815. doi: 10.7498/aps.57.808
    [20] 毛 威, 张书练. 基于双折射双频激光器中的调频回馈位移测量研究.  , 2007, 56(3): 1409-1414. doi: 10.7498/aps.56.1409
计量
  • 文章访问数:  7626
  • PDF下载量:  411
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-06
  • 修回日期:  2015-08-11
  • 刊出日期:  2015-12-05

/

返回文章
返回
Baidu
map