搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低维超导的实验进展

张玺 刘超飞 王健

引用本文:
Citation:

低维超导的实验进展

张玺, 刘超飞, 王健

Recent experimental progress in low-dimensional superconductors

Zhang Xi, Liu Chao-Fei, Wang Jian
PDF
导出引用
  • 超导自发现以来, 已成为凝聚态物理领域最重要的方向之一. 近年来, 低维材料制备技术的进步使得一维或二维的超导特性实验研究成为可能. 本文在简要介绍超导现象的基础上, 重点回顾了近些年二维超导薄膜和一维超导纳米线的制备和电输运研究, 以及在低维超导体中发现的相移、近邻效应、铁磁超导相互作用和高温超导等新奇的现象, 并对该领域的进一步发展做出了展望.
    Superconductivity is one of the most important research fields in condensed matter physics. The rapid development of material preparation technology in last few years has made the experimental study of low-dimensional physical superconducting properties feasible. This article gives a brief introduction on superconductivity and technology of low-dimensional material fabrication, and mainly focuses on the experimental progress in electrical transport studies on one-and two-dimensional superconductors, especially the results from our group. As for one-dimensional superconductivity, we review the superconductivities in single crystal Bi nanowires, crystalline Pb nano-belts, and amorphous W nanobelts, and the proximity effects in superconducting nanowires, metallic nanowires, and ferromagnetic nanowires. Surface superconductivity is revealed for crystalline Bi nanowire. The step-like voltage platforms in V-I curves are observed in Pb nano-belts and may be attributed to phase slip centers. Besides, vortex glass (VG) phase transition is discovered in amorphous W nano-belts. Inverse proximity effect is detected in crystalline Pb nanowires with normal electrodes, and proximity induced mini-gap is found in crystalline Au nanowire with superconducting electrodes. Furthermore, in crystalline ferromagnetic Co nanowire contacted by superconducting electrodes, unconventional long range proximity effect is observed. As for two-dimensional superconductivity, we review the superconductivities in Pb thin films on Si substrates, 2 atomic layer Ga films on GaN substrates, and one-unit-cell thick FeSe film on STO substrates grown by molecular beam epitaxy (MBE) method. By both in situ scanning tunneling microscopy/spectroscopy and ex situ transport and magnetization measurements, the two-atomic-layer Ga film with graphene-like structure on wide band-gap semiconductor GaN is found to be superconducting with Tc up to 5.4 K. By direct transport and magnetic measurements, the strong evidences for high temperature superconductivities in the 1-UC FeSe films on insulating STO substrates with the onset Tc and critical current density much higher than those for bulk FeSe are revealed. Finally, we give a summary and present a perspective on the future of low dimensional superconductors.
      通信作者: 王健, jianwangphysics@pku.edu.cn
    • 基金项目: 国家重大科学研究计划(批准号: 2013CB934600, 2012CB921300)、国家自然科学基金(批准号: 11222434, 11174007)和高等学校博士学科点专项科研基金资助的课题.
      Corresponding author: Wang Jian, jianwangphysics@pku.edu.cn
    • Funds: Project supported by the National Basic Program of China (Grant Nos. 2013CB934600, 2012CB921300), the National Natural Science Foundation of China (Grant Nos. 11222434, 11174007), and the Research Fund for the Doctoral Program of Higher Education (RFDP) of China.
    [1]

    Meissner W, Ochsenfeld R 1933 Naturwissenschaften 21 787

    [2]

    Tinkham M 1996 Introduction to Superconductivity (2nd Ed.) (New York: McGraw-Hill Inc.) pp43-108

    [3]

    Landau L D, Ginzburg V I 1950 Zh. Eksp. Teor. Fiz 20 546

    [4]

    Singh M, Wang J, Tian M L, Mallouk T E, Chan M H W 2011 Phys. Rev. B 83 220506

    [5]

    Singh M, Wang J, Tian M L, Zhang Q, Pereira A, Kumar N, Mallouk T E, Chan M H W 2009 Chem. Mater. 21 5557

    [6]

    Jose V J V 2013 40 Years of Berezinskii-Kosterlitz-Thouless Theory (Singapore: World Scientific)

    [7]

    Bera D, Kuiry S C, Seal S 2004 Jom 56 49

    [8]

    Lee W, Ji R, Gösele U, Nielsch K 2006 Nature Mater. 5 741

    [9]

    Liu Y, Allen R E 1995 Phys. Rev. B 52 1566

    [10]

    Overcash D R, Ratnam B A, Skove M J, Stillwell E P 1980 Phys. Rev. Lett. 44 1348

    [11]

    Hoffman R A, Frankl D R 1971 Phys. Rev. B 3 1825

    [12]

    Yang F Y, Liu K, Hong K, Reich D H, Searson P C, Chien C L 1999 Science 284 1335

    [13]

    Zhang Z, Sun X, Dresselhaus M S, Ying J Y, Heremans J 2000 Phys. Rev. B 61 4850

    [14]

    Wells J W, Dil J H, Meier F, Lobo-Checa J, Petrov V N, Osterwalder J, Ugeda M M, Fernandez-Torrente I, Pascual J I, Rienks E D L, Jensen M F, Hofmann Ph 2009 Phys. Rev. Lett. 102 096802

    [15]

    Nikolaeva A, Gitsu D, Konopko L, Graf M J, Huber T E 2008 Phys. Rev. B 77 075332

    [16]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045

    [17]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057

    [18]

    Zhang H, Liu C X, Qi X L, Dai X, Fang Z, Zhang S C 2009 Nature Phys. 5 438

    [19]

    Zeng Z, Morgan T A, Fan D, Li C, Hirono Y, Hu X, Zhao Y, Lee J S, Wang J, Wang Z M, Yu S, Hawkridge M E, Benamara M, Salamo G J 2013 AIP Adv. 3 072112

    [20]

    Wang J, DaSilva A M, Chang C Z, He K, Jain J K, Samarth N, Ma X C, Xue Q K, Chan M H W 2011 Phys. Rev. B 83 245438

    [21]

    Wang H, Liu H, Chang C Z, Zuo H, Zhao Y, Sun Y, Xia Z, He K, Ma X, Xie X C, Xue Q K, Wang J 2014 Sci. Rep. 4 5817

    [22]

    Zhao Y, Chang C Z, Jiang Y, DaSilva A, Sun Y, Wang H, Xing Y, Wang Y, He K, Ma X, Xue Q K, Wang J 2013 Sci. Rep. 3 3060

    [23]

    Tian M, Wang J, Zhang Q, Kumar N, Mallouk T E, Chan M H 2009 Nano Lett. 9 3196

    [24]

    Valizadeh S, Abid M, Hjort K 2006 Nanotechnology 17 1134

    [25]

    Ye Z, Zhang H, Liu H, Wu W, Luo Z 2008 Nanotechno-logy 19 085709

    [26]

    Little W A, Parks R D 1962 Phys. Rev. Lett. 9 9

    [27]

    Parks R D, Little W A 1964 Phys. Rev. 133 A97

    [28]

    Buisson O, Gandit P, Rammal R, Wang Y Y, Pannetier B 1990 Phys. Lett. A 150 36

    [29]

    Bezryadin A, Ovchinnikov Y N, Pannetier B 1996 Phys. Rev. B 53 8553

    [30]

    Moshchalkov V V, Gielen L, Strunk C, Jonckheere R, Qiu X, Van Haesendonck C, Bruynseraede Y 1995 Nature 373 319

    [31]

    Geim A K, Grigorieva I V, Dubonos S V, Lok J G S, Maan J C, Filippov A E, Peeters F M 1997 Nature 390 259

    [32]

    Kanda A, Baelus B J, Peeters F M, Kadowaki K, Ootuka Y 2004 Phys. Rev. Lett. 93 257002

    [33]

    Yang F Y, Liu K, Chien C L, Searson P C 1999 Phys. Rev. Lett. 82 3328

    [34]

    Yang F Y, Liu K, Hong K, Reich D H, Searson P C, Chien C L, Leprince-Wang Y, Yu-Zhang K, Han K 2000 Phys. Rev. B 61 6631

    [35]

    Brown III R D 1970 Phys. Rev. B 2 928

    [36]

    Tian M, Wang J, Ning W, Mallouk T E, Chan M H W 2015 Nano Lett. 15 1487

    [37]

    Wang J, Ma X C, Lu L, Jin A Z, Gu C Z, Xie X C, Jia J F, Chen X, Xue Q K 2008 Appl. Phys. Lett. 92 233119

    [38]

    Likharev K K 1979 Rev. Mod. Phys. 51 101

    [39]

    Guo Y, Zhang Y F, Bao X Y, Han T Z, Tang Z, Zhang L X, Zhu W G, Wang E G, Niu Q, Qiu Z Q, Jia J F, Zhao Z X, Xue Q K 2004 Science 306 1915

    [40]

    Gray A, Liu Y, Hong H, Chiang T C 2013 Phys. Rev. B 87 195415

    [41]

    Zhang Y F, Jia J F, Han T Z, Tang Z, Shen Q T, Guo Y, Qiu Z Q, Xue Q K 2005 Phys. Rev. Lett. 95 096802

    [42]

    Özer M M, Thompson J R, Weitering H H 2006 Nature Phys. 2 173

    [43]

    Wang J, Ma X C, Qi Y, Fu Y S, Ji S H, Lu L, Jia J F, Xue Q K 2007 Appl. Phys. Lett. 90 113109

    [44]

    Eom D, Qin S, Chou M Y, Shih C K 2006 Phys. Rev. Lett. 96 027005

    [45]

    Wang J, Ma X C, Qi Y, Ji S H, Fu Y S, Lu L, Jin A Z, Gu C Z, Xie X C, Tian M L, Jia J F, Xue Q K 2009 J. Appl. Phys. 106 034301

    [46]

    Tian M, Wang J, Kurtz J S, Liu Y, Chan M H W, Mayer T S, Mallouk T E 2005 Phys. Rev. B 71 104521

    [47]

    Rogachev A, Bezryadin A 2003 Appl. Phys. Lett. 83 512

    [48]

    Sadki E S, Ooi S, Hirata K 2004 Appl. Phys. Lett. 85 6206

    [49]

    Jenkins D W K, Allen G C, Prewett P D, Heard P J 1991 J. Phys.: Condens. Matter 3 S199

    [50]

    Langfischer H, Basnar B, Hutter H, Bertagnolli E 2002 J. Vac. Sci. Techno. A 20 1408

    [51]

    Gross M E, Harriott L R, Opila Jr R L 1990 J. Appl. Phys. 68 4820

    [52]

    Horváth E, Neumann P L, Tóth A L, Horváth Z E, Biró L P 2007 Microelectron. Eng. 84 837

    [53]

    Li W, Fenton J C, Wang Y, McComb D W, Warburton P A 2008 J. Appl. Phys. 104 093913

    [54]

    Gibson J W, Hein R A 1964 Phys. Rev. Lett. 12 688

    [55]

    Sun Y, Wang J, Zhao W, Tian M, Singh M, Chan M H 2013 Sci. Rep. 3 2307

    [56]

    Koch R H, Foglietti V, Gallagher W J, Koren G, Gupta A, Fisher M P A 1989 Phys. Rev. Lett. 63 1511

    [57]

    Fisher M P A 1989 Phys. Rev. Lett. 62 1415

    [58]

    Jiang W, Yeh N C, Reed D S, Kriplani U, Tombrello T A, Rice A P, Holtzberg F 1993 Phys. Rev. B 47 8308

    [59]

    Yamasaki H, Endo K, Kosaka S, Umeda M, Yoshida S, Kajimura K 1994 Phys. Rev. B 50 12959

    [60]

    Zhang Y Q, Ding J F, Xiang X Q, Li X G, Chen Q H 2009 Supercond. Sci. Tech. 22 085010

    [61]

    Zhang Y Z, Deltour R, De Marneffe J F, Wen H H, Qin Y L, Dong C, Li L, Zhao Z X 2000 Phys. Rev. B 62 11373

    [62]

    Sullivan M C, Isaacs R A, Salvaggio M F, Sousa J, Stathis C G, Olson J B 2010 Phys. Rev. B 81 134502

    [63]

    Fisher D S, Huse D A 1991 Phys. Rev. B 43 130

    [64]

    Ando Y, Kubota H, Tanaka S 1993 Phys. Rev. B 48 7716

    [65]

    Villegas J E, Gonzalez E M, Sefrioui Z, Santamaria J, Vicent J L 2005 Phys. Rev. B 72 174512

    [66]

    Villegas J E, Vicent J L 2005 Phys. Rev. B 71 144522

    [67]

    De Gennes P G 1964 Rev. Mod. Phys. 36 225

    [68]

    Chiang Y N, Shevchenko O G, Kolenov R N 2007 Low Temp. Phys. 33 314

    [69]

    Aumentado J, Chandrasekhar V 2001 Phys. Rev. B 64 054505

    [70]

    Wang J, Singh M, Tian M, Kumar N, Liu B, Shi C, Jain J K, Samarth N, Mallouk T E, Chan M H W 2010 Nature Phys. 6 389

    [71]

    Wang J, Shi C, Tian M, Zhang Q, Kumar N, Jain J K, Mallouk T E, Chan M H W 2009 Phys. Rev. Lett. 102 247003

    [72]

    Bergeret F S, Volkov A F, Efetov K B 2005 Rev. Mod. Phys. 77 1321

    [73]

    Giroud M, Courtois H, Hasselbach K, Pannetier B 1998 Phys. Rev. B 58 R11872

    [74]

    Wang J, Sun Y, Tian M, Liu B, Singh M, Chan M H W 2012 Phys. Rev. B 86 035439

    [75]

    Arutyunov K Y, Ryynänen T V, Pekola J P, Pavolotski A B 2001 Phys. Rev. B 63 092506

    [76]

    Zhang D, Wang J, DaSilva A M, Lee J S, Gutierrez H R, Chan M H W, Jain J, Samarth N 2011 Phys. Rev. B 84 165120

    [77]

    Wang J, Chang C Z, Li H, He K, Zhang D, Singh M, Ma X C, Samarth N, Xie M, Xue Q K, Chan M H W 2012 Phys. Rev. B 85 045415

    [78]

    Qin S, Kim J, Niu Q, Shih C K 2009 Science 324 1314

    [79]

    Zhang T, Cheng P, Li W J, Sun Y J, Wang G, Zhu X G, He K, Wang L, Ma X, Chen X, Wang Y, Liu Y, Lin H Q, Jia J F, Xue Q K 2010 Nature Phys. 6 104

    [80]

    Brun C, Cren T, Cherkez V, Debontridder F, Pons S, Fokin D, Tringides M C, Bozhjo S, Loffe L B, Altshuler B L, Roditchev D 2014 Nature Phys. 10 444

    [81]

    Uchihashi T, Mishra P, Aono M, Nakayama T 2011 Phys. Rev. Lett. 107 207001

    [82]

    Yamada M, Hirahara T, Hasegawa S 2013 Phys. Rev. Lett. 110 237001

    [83]

    Reyren N, Thiel S, Caviglia A D, Kourkoutis L F, Hammerl G, Richter C, Schneider C W, Kopp T, Ruetschi A S, Jaccard D, Gabay M, Muller D A, Triscone J M, Mannhart J 2007 Science 317 1196

    [84]

    Wang Q Y, Li Z, Zhang W H, Zhang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L L, Chen X, Ma X C, Xue Q K 2012 Chin. Phys. Lett. 29 037402

    [85]

    Zhang W H, Sun Y, Zhang J S, Li F S, Guo M H, Zhao Y F, Zhang H M, Peng J P, Xing Y, Wang H C, Takeshi F, Akihiko H, Li Z, Ding H, Tang C J, Wang M, Wang Q Y, He K, Ji S H, Chen X, Wang J F, Xia Z C, Li L, Wang Y Y, Wang J, Wang L L, Chen M W, Xue Q K, Ma X C 2014 Chin. Phys. Lett. 31 017401

    [86]

    Zhang H M, Sun Y, Li W, Peng J P, Song C L, Xing Y, Zhang Q H, Guan J Q, Li Z, Zhao Y F, Ji S H, Wang L, He K, Chen X, Gu L, Ling L, Tian M, Li L, Xie X C, Liu J P, Yang H, Xue Q K, Wang J, Ma X C 2015 Phys. Rev. Lett. 114 107003

    [87]

    Dynes R C, Narayanamurti V, Garno J P 1978 Phys. Rev. Lett. 41 1509

    [88]

    Bardeen J, Cooper L N, Schrieffer J R 1957 Phys. Rev. 108 1175

    [89]

    Gregory W D, Sheahen T P, Cochran J F 1966 Phys. Rev. 150 315

    [90]

    Berger L I, Roberts B W Handbook of Chemistry and Physics (London: CRC Press)

    [91]

    Brun C, Hong I P, Patthey F, Sklyadneva I Y, Heid R, Echenique P M, Bohner K P, Chulkov E V, Schneider W D 2009 Phys. Rev. Lett. 102 207002

    [92]

    Song C L, Wang Y L, Jiang Y P, Li Z, Wang L, He K, Chen X, Ma X, Xue Q 2011 Phys. Rev. B 84 020503

    [93]

    Bernardini F, Fiorentini V, Vanderbilt D 1997 Phys. Rev. B 56 R10024

    [94]

    Liu D, Zhang W, Mou D, He J, Ou Y B, Wang Q Y, Li Z, Wang L, Zhao L, He S, Peng Y, Liu X, Chen C, Yu L, Liu G, Dong X, Zhang J, Chen C, Xu Z, Hu J, Chen X, Ma X, Xue Q, Zhou X J 2012 Nature Commun. 3 931

    [95]

    He S, He J, Zhang W, Zhao L, Liu D, Liu X, Mou D, Ou Y B, Wang Q Y, Li Z, Wang L, Peng Y, Liu Y, Chen C, Yu L, Liu G, Dong X, Zhang J, Chen C, Xu Z, Chen X, Ma X, Xue Q, Zhou X J 2013 Nature Mater. 12 605

    [96]

    Zhang Y, Yang L X, Xu M, Ye Z R, Chen F, He C, Xu H C, Jiang J, Xie B P, Ying J J, Wang X F, Chen X H, Hu J P, Matsunami M, Kimura S, Feng D L 2011 Nature Mater. 10 273

    [97]

    Lei H, Hu R, Petrovic C 2011 Phys. Rev. B 84 014520

    [98]

    Claassen J H, Reeves M E, Soulen Jr R J 1991 Rev. Sci. Instrum. 62 996

    [99]

    Si W, Han S J, Shi X, Ehrlich S N, Jaroszynski J, Goyal A, Li Q 2013 Nature Commun. 4 1347

    [100]

    Gao Z, Ma Y, Yao C, Zhang X, Wang C, Wang D, Awaji S, Watanabe K 2012 Sci. Rep. 2 998

    [101]

    101 Kosterlitz J M, Thouless D J 1973 J. Phys. C: Solid St. Phys. 6 1181

    [102]

    Halperin B I, Nelson D R 1979 J. Low Temp. Phys. 36 599

    [103]

    Xing Y, Sun Y, Singh M, Zhao Y F, Chan M HW, Wang J 2013 Front. Phys. 8 491

  • [1]

    Meissner W, Ochsenfeld R 1933 Naturwissenschaften 21 787

    [2]

    Tinkham M 1996 Introduction to Superconductivity (2nd Ed.) (New York: McGraw-Hill Inc.) pp43-108

    [3]

    Landau L D, Ginzburg V I 1950 Zh. Eksp. Teor. Fiz 20 546

    [4]

    Singh M, Wang J, Tian M L, Mallouk T E, Chan M H W 2011 Phys. Rev. B 83 220506

    [5]

    Singh M, Wang J, Tian M L, Zhang Q, Pereira A, Kumar N, Mallouk T E, Chan M H W 2009 Chem. Mater. 21 5557

    [6]

    Jose V J V 2013 40 Years of Berezinskii-Kosterlitz-Thouless Theory (Singapore: World Scientific)

    [7]

    Bera D, Kuiry S C, Seal S 2004 Jom 56 49

    [8]

    Lee W, Ji R, Gösele U, Nielsch K 2006 Nature Mater. 5 741

    [9]

    Liu Y, Allen R E 1995 Phys. Rev. B 52 1566

    [10]

    Overcash D R, Ratnam B A, Skove M J, Stillwell E P 1980 Phys. Rev. Lett. 44 1348

    [11]

    Hoffman R A, Frankl D R 1971 Phys. Rev. B 3 1825

    [12]

    Yang F Y, Liu K, Hong K, Reich D H, Searson P C, Chien C L 1999 Science 284 1335

    [13]

    Zhang Z, Sun X, Dresselhaus M S, Ying J Y, Heremans J 2000 Phys. Rev. B 61 4850

    [14]

    Wells J W, Dil J H, Meier F, Lobo-Checa J, Petrov V N, Osterwalder J, Ugeda M M, Fernandez-Torrente I, Pascual J I, Rienks E D L, Jensen M F, Hofmann Ph 2009 Phys. Rev. Lett. 102 096802

    [15]

    Nikolaeva A, Gitsu D, Konopko L, Graf M J, Huber T E 2008 Phys. Rev. B 77 075332

    [16]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045

    [17]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057

    [18]

    Zhang H, Liu C X, Qi X L, Dai X, Fang Z, Zhang S C 2009 Nature Phys. 5 438

    [19]

    Zeng Z, Morgan T A, Fan D, Li C, Hirono Y, Hu X, Zhao Y, Lee J S, Wang J, Wang Z M, Yu S, Hawkridge M E, Benamara M, Salamo G J 2013 AIP Adv. 3 072112

    [20]

    Wang J, DaSilva A M, Chang C Z, He K, Jain J K, Samarth N, Ma X C, Xue Q K, Chan M H W 2011 Phys. Rev. B 83 245438

    [21]

    Wang H, Liu H, Chang C Z, Zuo H, Zhao Y, Sun Y, Xia Z, He K, Ma X, Xie X C, Xue Q K, Wang J 2014 Sci. Rep. 4 5817

    [22]

    Zhao Y, Chang C Z, Jiang Y, DaSilva A, Sun Y, Wang H, Xing Y, Wang Y, He K, Ma X, Xue Q K, Wang J 2013 Sci. Rep. 3 3060

    [23]

    Tian M, Wang J, Zhang Q, Kumar N, Mallouk T E, Chan M H 2009 Nano Lett. 9 3196

    [24]

    Valizadeh S, Abid M, Hjort K 2006 Nanotechnology 17 1134

    [25]

    Ye Z, Zhang H, Liu H, Wu W, Luo Z 2008 Nanotechno-logy 19 085709

    [26]

    Little W A, Parks R D 1962 Phys. Rev. Lett. 9 9

    [27]

    Parks R D, Little W A 1964 Phys. Rev. 133 A97

    [28]

    Buisson O, Gandit P, Rammal R, Wang Y Y, Pannetier B 1990 Phys. Lett. A 150 36

    [29]

    Bezryadin A, Ovchinnikov Y N, Pannetier B 1996 Phys. Rev. B 53 8553

    [30]

    Moshchalkov V V, Gielen L, Strunk C, Jonckheere R, Qiu X, Van Haesendonck C, Bruynseraede Y 1995 Nature 373 319

    [31]

    Geim A K, Grigorieva I V, Dubonos S V, Lok J G S, Maan J C, Filippov A E, Peeters F M 1997 Nature 390 259

    [32]

    Kanda A, Baelus B J, Peeters F M, Kadowaki K, Ootuka Y 2004 Phys. Rev. Lett. 93 257002

    [33]

    Yang F Y, Liu K, Chien C L, Searson P C 1999 Phys. Rev. Lett. 82 3328

    [34]

    Yang F Y, Liu K, Hong K, Reich D H, Searson P C, Chien C L, Leprince-Wang Y, Yu-Zhang K, Han K 2000 Phys. Rev. B 61 6631

    [35]

    Brown III R D 1970 Phys. Rev. B 2 928

    [36]

    Tian M, Wang J, Ning W, Mallouk T E, Chan M H W 2015 Nano Lett. 15 1487

    [37]

    Wang J, Ma X C, Lu L, Jin A Z, Gu C Z, Xie X C, Jia J F, Chen X, Xue Q K 2008 Appl. Phys. Lett. 92 233119

    [38]

    Likharev K K 1979 Rev. Mod. Phys. 51 101

    [39]

    Guo Y, Zhang Y F, Bao X Y, Han T Z, Tang Z, Zhang L X, Zhu W G, Wang E G, Niu Q, Qiu Z Q, Jia J F, Zhao Z X, Xue Q K 2004 Science 306 1915

    [40]

    Gray A, Liu Y, Hong H, Chiang T C 2013 Phys. Rev. B 87 195415

    [41]

    Zhang Y F, Jia J F, Han T Z, Tang Z, Shen Q T, Guo Y, Qiu Z Q, Xue Q K 2005 Phys. Rev. Lett. 95 096802

    [42]

    Özer M M, Thompson J R, Weitering H H 2006 Nature Phys. 2 173

    [43]

    Wang J, Ma X C, Qi Y, Fu Y S, Ji S H, Lu L, Jia J F, Xue Q K 2007 Appl. Phys. Lett. 90 113109

    [44]

    Eom D, Qin S, Chou M Y, Shih C K 2006 Phys. Rev. Lett. 96 027005

    [45]

    Wang J, Ma X C, Qi Y, Ji S H, Fu Y S, Lu L, Jin A Z, Gu C Z, Xie X C, Tian M L, Jia J F, Xue Q K 2009 J. Appl. Phys. 106 034301

    [46]

    Tian M, Wang J, Kurtz J S, Liu Y, Chan M H W, Mayer T S, Mallouk T E 2005 Phys. Rev. B 71 104521

    [47]

    Rogachev A, Bezryadin A 2003 Appl. Phys. Lett. 83 512

    [48]

    Sadki E S, Ooi S, Hirata K 2004 Appl. Phys. Lett. 85 6206

    [49]

    Jenkins D W K, Allen G C, Prewett P D, Heard P J 1991 J. Phys.: Condens. Matter 3 S199

    [50]

    Langfischer H, Basnar B, Hutter H, Bertagnolli E 2002 J. Vac. Sci. Techno. A 20 1408

    [51]

    Gross M E, Harriott L R, Opila Jr R L 1990 J. Appl. Phys. 68 4820

    [52]

    Horváth E, Neumann P L, Tóth A L, Horváth Z E, Biró L P 2007 Microelectron. Eng. 84 837

    [53]

    Li W, Fenton J C, Wang Y, McComb D W, Warburton P A 2008 J. Appl. Phys. 104 093913

    [54]

    Gibson J W, Hein R A 1964 Phys. Rev. Lett. 12 688

    [55]

    Sun Y, Wang J, Zhao W, Tian M, Singh M, Chan M H 2013 Sci. Rep. 3 2307

    [56]

    Koch R H, Foglietti V, Gallagher W J, Koren G, Gupta A, Fisher M P A 1989 Phys. Rev. Lett. 63 1511

    [57]

    Fisher M P A 1989 Phys. Rev. Lett. 62 1415

    [58]

    Jiang W, Yeh N C, Reed D S, Kriplani U, Tombrello T A, Rice A P, Holtzberg F 1993 Phys. Rev. B 47 8308

    [59]

    Yamasaki H, Endo K, Kosaka S, Umeda M, Yoshida S, Kajimura K 1994 Phys. Rev. B 50 12959

    [60]

    Zhang Y Q, Ding J F, Xiang X Q, Li X G, Chen Q H 2009 Supercond. Sci. Tech. 22 085010

    [61]

    Zhang Y Z, Deltour R, De Marneffe J F, Wen H H, Qin Y L, Dong C, Li L, Zhao Z X 2000 Phys. Rev. B 62 11373

    [62]

    Sullivan M C, Isaacs R A, Salvaggio M F, Sousa J, Stathis C G, Olson J B 2010 Phys. Rev. B 81 134502

    [63]

    Fisher D S, Huse D A 1991 Phys. Rev. B 43 130

    [64]

    Ando Y, Kubota H, Tanaka S 1993 Phys. Rev. B 48 7716

    [65]

    Villegas J E, Gonzalez E M, Sefrioui Z, Santamaria J, Vicent J L 2005 Phys. Rev. B 72 174512

    [66]

    Villegas J E, Vicent J L 2005 Phys. Rev. B 71 144522

    [67]

    De Gennes P G 1964 Rev. Mod. Phys. 36 225

    [68]

    Chiang Y N, Shevchenko O G, Kolenov R N 2007 Low Temp. Phys. 33 314

    [69]

    Aumentado J, Chandrasekhar V 2001 Phys. Rev. B 64 054505

    [70]

    Wang J, Singh M, Tian M, Kumar N, Liu B, Shi C, Jain J K, Samarth N, Mallouk T E, Chan M H W 2010 Nature Phys. 6 389

    [71]

    Wang J, Shi C, Tian M, Zhang Q, Kumar N, Jain J K, Mallouk T E, Chan M H W 2009 Phys. Rev. Lett. 102 247003

    [72]

    Bergeret F S, Volkov A F, Efetov K B 2005 Rev. Mod. Phys. 77 1321

    [73]

    Giroud M, Courtois H, Hasselbach K, Pannetier B 1998 Phys. Rev. B 58 R11872

    [74]

    Wang J, Sun Y, Tian M, Liu B, Singh M, Chan M H W 2012 Phys. Rev. B 86 035439

    [75]

    Arutyunov K Y, Ryynänen T V, Pekola J P, Pavolotski A B 2001 Phys. Rev. B 63 092506

    [76]

    Zhang D, Wang J, DaSilva A M, Lee J S, Gutierrez H R, Chan M H W, Jain J, Samarth N 2011 Phys. Rev. B 84 165120

    [77]

    Wang J, Chang C Z, Li H, He K, Zhang D, Singh M, Ma X C, Samarth N, Xie M, Xue Q K, Chan M H W 2012 Phys. Rev. B 85 045415

    [78]

    Qin S, Kim J, Niu Q, Shih C K 2009 Science 324 1314

    [79]

    Zhang T, Cheng P, Li W J, Sun Y J, Wang G, Zhu X G, He K, Wang L, Ma X, Chen X, Wang Y, Liu Y, Lin H Q, Jia J F, Xue Q K 2010 Nature Phys. 6 104

    [80]

    Brun C, Cren T, Cherkez V, Debontridder F, Pons S, Fokin D, Tringides M C, Bozhjo S, Loffe L B, Altshuler B L, Roditchev D 2014 Nature Phys. 10 444

    [81]

    Uchihashi T, Mishra P, Aono M, Nakayama T 2011 Phys. Rev. Lett. 107 207001

    [82]

    Yamada M, Hirahara T, Hasegawa S 2013 Phys. Rev. Lett. 110 237001

    [83]

    Reyren N, Thiel S, Caviglia A D, Kourkoutis L F, Hammerl G, Richter C, Schneider C W, Kopp T, Ruetschi A S, Jaccard D, Gabay M, Muller D A, Triscone J M, Mannhart J 2007 Science 317 1196

    [84]

    Wang Q Y, Li Z, Zhang W H, Zhang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L L, Chen X, Ma X C, Xue Q K 2012 Chin. Phys. Lett. 29 037402

    [85]

    Zhang W H, Sun Y, Zhang J S, Li F S, Guo M H, Zhao Y F, Zhang H M, Peng J P, Xing Y, Wang H C, Takeshi F, Akihiko H, Li Z, Ding H, Tang C J, Wang M, Wang Q Y, He K, Ji S H, Chen X, Wang J F, Xia Z C, Li L, Wang Y Y, Wang J, Wang L L, Chen M W, Xue Q K, Ma X C 2014 Chin. Phys. Lett. 31 017401

    [86]

    Zhang H M, Sun Y, Li W, Peng J P, Song C L, Xing Y, Zhang Q H, Guan J Q, Li Z, Zhao Y F, Ji S H, Wang L, He K, Chen X, Gu L, Ling L, Tian M, Li L, Xie X C, Liu J P, Yang H, Xue Q K, Wang J, Ma X C 2015 Phys. Rev. Lett. 114 107003

    [87]

    Dynes R C, Narayanamurti V, Garno J P 1978 Phys. Rev. Lett. 41 1509

    [88]

    Bardeen J, Cooper L N, Schrieffer J R 1957 Phys. Rev. 108 1175

    [89]

    Gregory W D, Sheahen T P, Cochran J F 1966 Phys. Rev. 150 315

    [90]

    Berger L I, Roberts B W Handbook of Chemistry and Physics (London: CRC Press)

    [91]

    Brun C, Hong I P, Patthey F, Sklyadneva I Y, Heid R, Echenique P M, Bohner K P, Chulkov E V, Schneider W D 2009 Phys. Rev. Lett. 102 207002

    [92]

    Song C L, Wang Y L, Jiang Y P, Li Z, Wang L, He K, Chen X, Ma X, Xue Q 2011 Phys. Rev. B 84 020503

    [93]

    Bernardini F, Fiorentini V, Vanderbilt D 1997 Phys. Rev. B 56 R10024

    [94]

    Liu D, Zhang W, Mou D, He J, Ou Y B, Wang Q Y, Li Z, Wang L, Zhao L, He S, Peng Y, Liu X, Chen C, Yu L, Liu G, Dong X, Zhang J, Chen C, Xu Z, Hu J, Chen X, Ma X, Xue Q, Zhou X J 2012 Nature Commun. 3 931

    [95]

    He S, He J, Zhang W, Zhao L, Liu D, Liu X, Mou D, Ou Y B, Wang Q Y, Li Z, Wang L, Peng Y, Liu Y, Chen C, Yu L, Liu G, Dong X, Zhang J, Chen C, Xu Z, Chen X, Ma X, Xue Q, Zhou X J 2013 Nature Mater. 12 605

    [96]

    Zhang Y, Yang L X, Xu M, Ye Z R, Chen F, He C, Xu H C, Jiang J, Xie B P, Ying J J, Wang X F, Chen X H, Hu J P, Matsunami M, Kimura S, Feng D L 2011 Nature Mater. 10 273

    [97]

    Lei H, Hu R, Petrovic C 2011 Phys. Rev. B 84 014520

    [98]

    Claassen J H, Reeves M E, Soulen Jr R J 1991 Rev. Sci. Instrum. 62 996

    [99]

    Si W, Han S J, Shi X, Ehrlich S N, Jaroszynski J, Goyal A, Li Q 2013 Nature Commun. 4 1347

    [100]

    Gao Z, Ma Y, Yao C, Zhang X, Wang C, Wang D, Awaji S, Watanabe K 2012 Sci. Rep. 2 998

    [101]

    101 Kosterlitz J M, Thouless D J 1973 J. Phys. C: Solid St. Phys. 6 1181

    [102]

    Halperin B I, Nelson D R 1979 J. Low Temp. Phys. 36 599

    [103]

    Xing Y, Sun Y, Singh M, Zhao Y F, Chan M HW, Wang J 2013 Front. Phys. 8 491

  • [1] 邹幸, 朱哲, 方文啸. 纳米线电卡效应的表面应力与固溶改性相场模拟.  , 2024, 73(10): 100501. doi: 10.7498/aps.73.20240105
    [2] 郭琳, 杨小帆, 程二建, 泮炳霖, 朱楚楚, 李世燕. 三角晶格自旋液体候选材料NaYbSe2在高压下的超导转变.  , 2023, 72(15): 157401. doi: 10.7498/aps.72.20230730
    [3] 余泽浩, 张力发, 吴靖, 赵云山. 二维层状热电材料研究进展.  , 2023, 72(5): 057301. doi: 10.7498/aps.72.20222095
    [4] 徐帅, 杨贇贇, 刘行, 何济洲. 基于一维弹道导体的三端纳米线制冷机的性能优化.  , 2022, 71(2): 020501. doi: 10.7498/aps.71.20211077
    [5] 王浩林, 宗其军, 黄焱, 陈以威, 朱雨剑, 魏凌楠, 王雷. 二维原子晶体的转移堆叠方法及其高质量电子器件的研究进展.  , 2021, 70(13): 138202. doi: 10.7498/aps.70.20210929
    [6] 陈亚琦, 许华慨, 唐东升, 余芳, 雷乐, 欧阳钢. 单根SnO2纳米线器件的电输运性能及其机理研究.  , 2018, 67(24): 246801. doi: 10.7498/aps.67.20181402
    [7] 白继元, 贺泽龙, 李立, 韩桂华, 张彬林, 姜平晖, 樊玉环. 两端线型双量子点分子Aharonov-Bohm干涉仪电输运.  , 2015, 64(20): 207304. doi: 10.7498/aps.64.207304
    [8] 张兆慧, 李海鹏, 韩奎. 纳米摩擦中极性有机分子超薄膜的结构、对称性及能量机理.  , 2013, 62(15): 158701. doi: 10.7498/aps.62.158701
    [9] 周渝, 张蜡宝, 郏涛, 赵清源, 顾敏, 邱健, 康琳, 陈健, 吴培亨. 超导纳米线多光子响应特性研究.  , 2012, 61(20): 208501. doi: 10.7498/aps.61.208501
    [10] 石高明, 邹志强, 孙立民, 李玮聪, 刘晓勇. Si衬底上生长的MnSi薄膜和MnSi1.7 纳米线的STM和XPS分析.  , 2012, 61(22): 227301. doi: 10.7498/aps.61.227301
    [11] 丁磊, 王聪, 褚立华, 纳元元, 闫君. 反钙钛矿Mn3AX化合物的晶格、磁性和电输运性质的研究进展.  , 2011, 60(9): 097507. doi: 10.7498/aps.60.097507
    [12] 张蜡宝, 康琳, 陈健, 赵清源, 郏涛, 许伟伟, 曹春海, 金飚兵, 吴培亨. 超导纳米线单光子探测器.  , 2011, 60(3): 038501. doi: 10.7498/aps.60.038501
    [13] 仲崇贵, 蒋青, 方靖淮, 江学范, 罗礼进. 1-3型纳米多铁复合薄膜中电场诱导的磁化研究.  , 2009, 58(10): 7227-7234. doi: 10.7498/aps.58.7227
    [14] 宋超, 陈谷然, 徐骏, 王涛, 孙红程, 刘宇, 李伟, 陈坤基. 不同退火温度下晶化硅薄膜的电学输运性质.  , 2009, 58(11): 7878-7883. doi: 10.7498/aps.58.7878
    [15] 曾春来, 唐东升, 刘星辉, 海 阔, 羊 亿, 袁华军, 解思深. 化学气相沉积法中SnO2一维纳米结构的控制生长.  , 2007, 56(11): 6531-6536. doi: 10.7498/aps.56.6531
    [16] 唐秋文, 沈明荣, 方 亮. 两种不同(Ba,Sr)TiO3薄膜介电-温度特性的研究.  , 2006, 55(3): 1346-1350. doi: 10.7498/aps.55.1346
    [17] 孟凡斌, 胡海宁, 李养贤, 陈贵锋, 陈京兰, 吴光恒. 一维Co单晶纳米线的x射线研究.  , 2005, 54(1): 384-388. doi: 10.7498/aps.54.384
    [18] 熊昌民, 孙继荣, 王登京, 沈保根. 厚度与应变效应对La0.67Ca0.33MnO3薄膜电输运与居里温度的影响.  , 2004, 53(11): 3909-3915. doi: 10.7498/aps.53.3909
    [19] 许北雪, 吴锦雷, 刘惟敏, 杨海, 邵庆益, 刘盛, 薛增泉, 吴全德. 稀土对金属纳米粒子-介质复合薄膜(Ag-BaO)光电发射性能的增强.  , 2001, 50(5): 977-980. doi: 10.7498/aps.50.977
    [20] 徐刚毅, 王天民, 何宇亮, 马智训, 郑国珍. 纳米硅薄膜的低温电输运机制.  , 2000, 49(9): 1798-1803. doi: 10.7498/aps.49.1798
计量
  • 文章访问数:  8180
  • PDF下载量:  912
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-08-14
  • 修回日期:  2015-10-21
  • 刊出日期:  2015-11-05

/

返回文章
返回
Baidu
map