搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

N2H4在NiFe(111)合金表面吸附稳定性和电子结构的第一性原理研究

贺艳斌 贾建峰 武海顺

引用本文:
Citation:

N2H4在NiFe(111)合金表面吸附稳定性和电子结构的第一性原理研究

贺艳斌, 贾建峰, 武海顺

First-principles study of stability and electronic structure of N2H4 adsorption on NiFe(111) alloy surface

He Yan-Bin, Jia Jian-Feng, Wu Hai-Shun
PDF
导出引用
  • 采用基于色散校正的密度泛函理论进行了第一性原理研究, 详细分析了肼(N2H4)在Ni8Fe8/Ni(111)合金表面稳定吸附构型的吸附稳定性和电子结构及成键性质. 通过比较发现, 肼分子以桥接方式吸附在表面的两个Fe原子上是最稳定的吸附构型, 其吸附能为-1.578 eV/N2H4. 同时发现, 肼分子在这一表面上吸附稳定性的趋势为: 桥位比顶位吸附更有利, 且在Fe原子上比在Ni原子上的吸附作用更强. 进一步分析了不同吸附位点上稳定吸附构型的电子结构、电荷密度转移以及电子局域化情况. 结果发现: 相同吸附位点的电子态密度图基本一致, 并且N原子的p轨道和与之相互作用的表面原子的d轨道之间存在态密度上的重叠; 吸附后电荷密度则主要从肼分子转移到表面原子之上; 在电子局域化函数切面图中也发现吸附后电子被局域到肼分子的N原子和相邻的表面原子之间. 这些电子结构的表征都充分说明肼分子与表面原子之间通过电荷转移形成了强烈的配位共价作用.
    We use the density functional theory (DFT) with dispersion correction to investigate the stability and electronic structure of hydrazine (N2H4) adsorpted on Ni8Fe8/Ni (111) alloy surface. The geometries and adsorption characteristics of the structure on the Ni8Fe8 alloy surface are presented. Results show that N2H4 bridging between two iron atoms gives the strongest adsorption with an adsorption energy of -1.578 eV/N2H4. Top modes turn out to be the local minima with adsorption energies of -1.346 eV/N2H4 (for the top site on a Fe atom) and -1.061 eV/N2H4 (for the top site on a Ni atom). It is demonstrated that the bridging mode is more favorable than the top mode on the NiFe alloy surface with a coverage of 1/16 ML, and Fe atom can provide stronger adsorption site than Ni atom. The van der Waals contribution is significant with a value of about 0.4 eV/N2H4. Meanwhile, the van der Waals contribution is larger for adsorption on Fe atom than on Ni atom, and for adsorption of the bridging mode than of the top mode. We also find that the structure of N2H4 in the anti molecule, rather than the gauche molecule, is bound on the top site of Fe atom on the NiFe alloy surface with a coverage of 1/16 ML, which demonstrates that the repulsive adsorbate-adsorbate interaction is weak on the surface with low coverage. The strong interaction between the surface atom and the adsorbate contributes to the result that the lone pair electrons of N2H4 in gauche conformer are attracted by the Fe atom. In addition, for the five adsorption structures of N2H4 on Ni8Fe8/Ni(111) alloy surface, we analyze the projected electronic density of states (DOS), induced charge density and electron localisation function (ELF) slices through the Fe-N or Ni-N bonds of the adsorbed molecule on the alloy surface. It shows that the electronic DOS presents the mixture between HOMO of N2H4 and the d orbital of the surface atom, which corresponds to charge transfer between the substrate and the adsorbate. The charges are transferred mainly from N2H4 to the surface atoms, and the extents of charge transfer are different for the bridging mode and the top one which is present in the induced charge density. Furthermore, the region of localisation in the ELF slices can be found for the adsorptions between the N atom of N2H4 and the Fe or Ni atom of surface, which gives a clear view of the coordination bonds for the interactions of N–Fe or N–Ni.
    • 基金项目: 国家自然科学基金(批准号: 21373131)和教育部新世纪优秀人才支持计划(批准号: NCET-12-1035)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 21373131) and the Program for New Century Excellent Talents in University of Ministry of Education of China (Grant No. NCET-12-1035).
    [1]

    Cao N, Su J, Luo W, Cheng G 2014 Int. J. Hydrogen Energ. 39 9726

    [2]

    He L, Huang Y, Liu X Y, Li L, Wang A, Wang X, Mou C Y, Zhang T 2014 Appl. Catal. B: Environ. 147 779

    [3]

    Serov A, Padilla M, Roy A J, Atanassov P, Sakamoto T, Asazawa K, Tanaka H 2014 Angew. Chem. Int. Ed. 53 10336

    [4]

    Singh S K, Zhang X B, Xu Q 2009 J. Am. Chem. Soc. 131 9894

    [5]

    Singh S K, Xu Q 2009 J. Am. Chem. Soc. 131 18032

    [6]

    Singh A K, Yadav M, Aranishi K, Xu Q 2012 Int. J. Hydrogen Energ. 37 18915

    [7]

    Singh S K, Lizuka Y, Xu Q 2011 Int. J. Hydrogen Energ. 36 11794

    [8]

    Singh S K, Xu Q 2010 Chem. Commun. 46 6545

    [9]

    Singh S K, Singh A K, Aranishi K, Xu Q 2011 J. Am. Chem. Soc. 133 19638

    [10]

    Manukyan K V, Cross A, Rouvimov S, Miller J, Mukasyan A S, Wolf E E 2014 Appl. Catal. A: Gen. 476 47

    [11]

    Chen J H, Liu E K, Li Y, Qi X, Liu G D, Luo H Z, Wang W H, Wu G H 2015 Acta Phys. Sin. 64 077104 (in Chinese) [陈家华, 刘恩克, 李勇, 祁欣, 刘国栋, 罗鸿志, 王文洪, 吴光恒 2015 64 077104]

    [12]

    Liao J, Xie Z Q, Yuan J M, Huang Y P, Mao Y L 2014 Acta Phys. Sin. 63 163101 (in Chinese) [廖建, 谢召起, 袁健美, 黄艳平, 毛宇亮 2014 63 163101]

    [13]

    Li L, Xu J, Xu L F, Lian C S, Li J J, Wang J T, Gu C Z 2015 Chin. Phys. B 24 056803

    [14]

    Daff T D, Costa D, Lisiecki I, de Leeuw N H 2009 J. Phys. Chem. C 113 15714

    [15]

    Daff T D, de Leeuw N H 2012 J. Mater. Chem. 22 23210

    [16]

    Tafreshi S S, Roldan A, Dzade N Y, de Leeuw N H 2014 Surf. Sci. 622 1

    [17]

    Tafreshi S S, Roldan A, de Leeuw N H 2014 J. Phys. Chem. C 118 26103

    [18]

    Zhang P X, Wang Y G, Huang Y Q, Zhang T, Wu G S, Li J 2011 Catal. Today 165 80

    [19]

    Agusta M K, Kasai H 2012 Surf. Sci. 606 766

    [20]

    McKay H L, Jenkins S J, Wales D J 2011 J. Phys. Chem. C 115 17812

    [21]

    Deng Z, Lu X, Wen Z, Wei S, Liu Y, Fu D, Zhao L, Guo W 2013 Phys. Chem. Chem. Phys. 15 16172

    [22]

    Zhu J P, Ma L, Zhou S M, Miao J, Jiang Y 2015 Chin. Phys. B 24 017101

    [23]

    He Y B, Jia J F, Wu H S 2015 Appl. Surf. Sci. 339 36

    [24]

    Pereira A O, Miranda C R 2014 Appl. Surf. Sci. 288 564

    [25]

    Carrasco J, Liu W, Michaelides A, Tkatchenko A 2014 J. Chem. Phys. 140 084704

    [26]

    Atodiresei N, Caciuc V, Franke J H, Blgel S 2008 Phys. Rev. B 78 045411

    [27]

    Blöchl P E 1994 Phys. Rev. B 50 17953

    [28]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [29]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [30]

    Kresse G, Furthmller J 1996 Comp. Mater. Sci 6 15

    [31]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558

    [32]

    Kresse G, Hafner J 1994 Phys. Rev. B 49 14251

    [33]

    Perdew J P, Burke K, Ernzerhof M 1997 Phys. Rev. Lett. 78 1396

    [34]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [35]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [36]

    Methfessel M, Paxton A T 1989 Phys. Rev. B 40 3616

    [37]

    Štich I, Car R, Parrinello M, Baroni S 1989 Phys. Rev. B 39 4997

    [38]

    Momma K, Izumi F 2011 J. Appl. Crystallogr. 44 1272

    [39]

    Grimme S, Ehrlich S, Goerigk L 2011 J. Comput. Chem. 32 1456

    [40]

    Grimme S, Antony J, Ehrlich S, Krieg H 2010 J. Chem. Phys. 132 154104

    [41]

    Tereshchuk P, Da Silva J L F 2012 J. Phys. Chem. C 116 24695

    [42]

    He Y B, Jia J F, Wu H S 2015 J. Phys. Chem. C 119 8763

    [43]

    Albright T A, Burdett J K, Whangbo M H 2013 Orbital Interactions in Chemistry (2nd Ed.) (New York: John Wiley & Sons, Inc.)

    [44]

    Kitchin J R, Nørskov J K, Barteau M A, Chen J G 2004 J. Chem. Phys. 120 10240

    [45]

    Burdett J K, McCormick T A 1998 J. Phys. Chem. A 102 6366

    [46]

    Becke A D, Edgecombe K E 1990 J. Chem. Phys. 92 5397

  • [1]

    Cao N, Su J, Luo W, Cheng G 2014 Int. J. Hydrogen Energ. 39 9726

    [2]

    He L, Huang Y, Liu X Y, Li L, Wang A, Wang X, Mou C Y, Zhang T 2014 Appl. Catal. B: Environ. 147 779

    [3]

    Serov A, Padilla M, Roy A J, Atanassov P, Sakamoto T, Asazawa K, Tanaka H 2014 Angew. Chem. Int. Ed. 53 10336

    [4]

    Singh S K, Zhang X B, Xu Q 2009 J. Am. Chem. Soc. 131 9894

    [5]

    Singh S K, Xu Q 2009 J. Am. Chem. Soc. 131 18032

    [6]

    Singh A K, Yadav M, Aranishi K, Xu Q 2012 Int. J. Hydrogen Energ. 37 18915

    [7]

    Singh S K, Lizuka Y, Xu Q 2011 Int. J. Hydrogen Energ. 36 11794

    [8]

    Singh S K, Xu Q 2010 Chem. Commun. 46 6545

    [9]

    Singh S K, Singh A K, Aranishi K, Xu Q 2011 J. Am. Chem. Soc. 133 19638

    [10]

    Manukyan K V, Cross A, Rouvimov S, Miller J, Mukasyan A S, Wolf E E 2014 Appl. Catal. A: Gen. 476 47

    [11]

    Chen J H, Liu E K, Li Y, Qi X, Liu G D, Luo H Z, Wang W H, Wu G H 2015 Acta Phys. Sin. 64 077104 (in Chinese) [陈家华, 刘恩克, 李勇, 祁欣, 刘国栋, 罗鸿志, 王文洪, 吴光恒 2015 64 077104]

    [12]

    Liao J, Xie Z Q, Yuan J M, Huang Y P, Mao Y L 2014 Acta Phys. Sin. 63 163101 (in Chinese) [廖建, 谢召起, 袁健美, 黄艳平, 毛宇亮 2014 63 163101]

    [13]

    Li L, Xu J, Xu L F, Lian C S, Li J J, Wang J T, Gu C Z 2015 Chin. Phys. B 24 056803

    [14]

    Daff T D, Costa D, Lisiecki I, de Leeuw N H 2009 J. Phys. Chem. C 113 15714

    [15]

    Daff T D, de Leeuw N H 2012 J. Mater. Chem. 22 23210

    [16]

    Tafreshi S S, Roldan A, Dzade N Y, de Leeuw N H 2014 Surf. Sci. 622 1

    [17]

    Tafreshi S S, Roldan A, de Leeuw N H 2014 J. Phys. Chem. C 118 26103

    [18]

    Zhang P X, Wang Y G, Huang Y Q, Zhang T, Wu G S, Li J 2011 Catal. Today 165 80

    [19]

    Agusta M K, Kasai H 2012 Surf. Sci. 606 766

    [20]

    McKay H L, Jenkins S J, Wales D J 2011 J. Phys. Chem. C 115 17812

    [21]

    Deng Z, Lu X, Wen Z, Wei S, Liu Y, Fu D, Zhao L, Guo W 2013 Phys. Chem. Chem. Phys. 15 16172

    [22]

    Zhu J P, Ma L, Zhou S M, Miao J, Jiang Y 2015 Chin. Phys. B 24 017101

    [23]

    He Y B, Jia J F, Wu H S 2015 Appl. Surf. Sci. 339 36

    [24]

    Pereira A O, Miranda C R 2014 Appl. Surf. Sci. 288 564

    [25]

    Carrasco J, Liu W, Michaelides A, Tkatchenko A 2014 J. Chem. Phys. 140 084704

    [26]

    Atodiresei N, Caciuc V, Franke J H, Blgel S 2008 Phys. Rev. B 78 045411

    [27]

    Blöchl P E 1994 Phys. Rev. B 50 17953

    [28]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [29]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [30]

    Kresse G, Furthmller J 1996 Comp. Mater. Sci 6 15

    [31]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558

    [32]

    Kresse G, Hafner J 1994 Phys. Rev. B 49 14251

    [33]

    Perdew J P, Burke K, Ernzerhof M 1997 Phys. Rev. Lett. 78 1396

    [34]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [35]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [36]

    Methfessel M, Paxton A T 1989 Phys. Rev. B 40 3616

    [37]

    Štich I, Car R, Parrinello M, Baroni S 1989 Phys. Rev. B 39 4997

    [38]

    Momma K, Izumi F 2011 J. Appl. Crystallogr. 44 1272

    [39]

    Grimme S, Ehrlich S, Goerigk L 2011 J. Comput. Chem. 32 1456

    [40]

    Grimme S, Antony J, Ehrlich S, Krieg H 2010 J. Chem. Phys. 132 154104

    [41]

    Tereshchuk P, Da Silva J L F 2012 J. Phys. Chem. C 116 24695

    [42]

    He Y B, Jia J F, Wu H S 2015 J. Phys. Chem. C 119 8763

    [43]

    Albright T A, Burdett J K, Whangbo M H 2013 Orbital Interactions in Chemistry (2nd Ed.) (New York: John Wiley & Sons, Inc.)

    [44]

    Kitchin J R, Nørskov J K, Barteau M A, Chen J G 2004 J. Chem. Phys. 120 10240

    [45]

    Burdett J K, McCormick T A 1998 J. Phys. Chem. A 102 6366

    [46]

    Becke A D, Edgecombe K E 1990 J. Chem. Phys. 92 5397

  • [1] 李小林, 袁坤, 何嘉乐, 刘洪峰, 张建波, 周阳. NH3在TaC(0001)表面吸附和解离的第一性原理研究.  , 2022, 71(1): 017103. doi: 10.7498/aps.71.20210400
    [2] 吴洪芬, 冯盼君, 张烁, 刘大鹏, 高淼, 闫循旺. 铁原子吸附联苯烯单层电子结构的第一性原理.  , 2022, 71(3): 036801. doi: 10.7498/aps.71.20211631
    [3] 李小林, 袁坤, 何嘉乐, 刘洪峰, 张建波, 周阳. NH3在TaC(0001)表面吸附和解离的第一性原理研究*.  , 2021, (): . doi: 10.7498/aps.70.20210400
    [4] 吴洪芬, 冯盼君, 张烁, 刘大鹏, 高淼, 闫循旺. 铁原子吸附联苯烯单层电子结构的第一性原理研究.  , 2021, (): . doi: 10.7498/aps.70.20211631
    [5] 曹青松, 邓开明. X@C20F20(X=He,Ne,Ar,Kr)几何结构和 电子结构的理论研究.  , 2016, 65(5): 056102. doi: 10.7498/aps.65.056102
    [6] 孙建平, 周科良, 梁晓东. B,P单掺杂和共掺杂石墨烯对O,O2,OH和OOH吸附特性的密度泛函研究.  , 2016, 65(1): 018201. doi: 10.7498/aps.65.018201
    [7] 孙建平, 缪应蒙, 曹相春. 基于密度泛函理论研究掺杂Pd石墨烯吸附O2及CO.  , 2013, 62(3): 036301. doi: 10.7498/aps.62.036301
    [8] 张蓓, 保安, 陈楚, 张军. ConCm(n=15; m=1,2)团簇的密度泛函理论研究.  , 2012, 61(15): 153601. doi: 10.7498/aps.61.153601
    [9] 唐春梅, 郭微, 朱卫华, 刘明熠, 张爱梅, 巩江峰, 王辉. 内掺过渡金属非典型富勒烯M@C22(M=Sc, Ti, V, Cr, Mn, Fe, Co, Ni) 几何结构、电子结构、稳定性和磁性的密度泛函研究.  , 2012, 61(2): 026101. doi: 10.7498/aps.61.026101
    [10] 吕兵, 令狐荣锋, 宋晓书, 王晓璐, 杨向东, 贺端威. 氧原子在Pt(111)表面和次表层的吸附与扩散.  , 2012, 61(7): 076802. doi: 10.7498/aps.61.076802
    [11] 曹青松, 袁勇波, 肖传云, 陆瑞锋, 阚二军, 邓开明. C80H80几何结构和电子性质的密度泛函研究.  , 2012, 61(10): 106101. doi: 10.7498/aps.61.106101
    [12] 袁健美, 郝文平, 李顺辉, 毛宇亮. Ni(111)表面C原子吸附的密度泛函研究.  , 2012, 61(8): 087301. doi: 10.7498/aps.61.087301
    [13] 张秀荣, 吴礼清, 饶倩. (OsnN)0,(n=16)团簇电子结构与光谱性质的理论研究.  , 2011, 60(8): 083601. doi: 10.7498/aps.60.083601
    [14] 黄平, 杨春. TiO2分子在GaN(0001)表面吸附的理论研究.  , 2011, 60(10): 106801. doi: 10.7498/aps.60.106801
    [15] 孙建敏, 赵高峰, 王献伟, 杨雯, 刘岩, 王渊旭. Cu吸附(SiO3)n(n=1—8)团簇几何结构和电子性质的密度泛函研究.  , 2010, 59(11): 7830-7837. doi: 10.7498/aps.59.7830
    [16] 张建军, 张红. Al吸附在Pt, Ir和Au的(111)面的低覆盖度研究.  , 2010, 59(6): 4143-4149. doi: 10.7498/aps.59.4143
    [17] 陈亮, 徐灿, 张小芳. 氧化镁纳米管团簇电子结构的密度泛函研究.  , 2009, 58(3): 1603-1607. doi: 10.7498/aps.58.1603
    [18] 林峰, 郑法伟, 欧阳方平. H2O在SrTiO3-(001)TiO2表面上吸附和解离的密度泛函理论研究.  , 2009, 58(13): 193-S198. doi: 10.7498/aps.58.193
    [19] 杨培芳, 胡娟梅, 滕波涛, 吴锋民, 蒋仕宇. Rh在单壁碳纳米管上吸附的密度泛函理论研究.  , 2009, 58(5): 3331-3337. doi: 10.7498/aps.58.3331
    [20] 陈国栋, 王六定, 张教强, 曹得财, 安 博, 丁富才, 梁锦奎. 掺硼水吸附碳纳米管电子场发射性能的第一性原理研究.  , 2008, 57(11): 7164-7167. doi: 10.7498/aps.57.7164
计量
  • 文章访问数:  7351
  • PDF下载量:  290
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-04-06
  • 修回日期:  2015-06-24
  • 刊出日期:  2015-10-05

/

返回文章
返回
Baidu
map