搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于探针光调制的皮秒分辨X-ray探测方法与实验

王博 白永林 曹伟伟 徐鹏 刘百玉 缑永胜 朱炳利 候洵

引用本文:
Citation:

基于探针光调制的皮秒分辨X-ray探测方法与实验

王博, 白永林, 曹伟伟, 徐鹏, 刘百玉, 缑永胜, 朱炳利, 候洵

Picosecond resolving detection method and experiment for ultrafast X-ray by modulation of an optical probe

Wang Bo, Bai Yong-Lin, Cao Wei-Wei, Xu Peng, Liu Bai-Yu, Gou Yong-Sheng, Zhu Bing-Li, Hou Xun
PDF
导出引用
  • 高能密度物理研究中涉及许多单次皮秒现象的诊断测量, 然而对单次X-ray脉冲形状、X-ray与激光脉冲的皮秒精度同步依然是极具挑战的课题. 传统行波选通分幅相机受电子渡越时间限制, 难以突破40 ps时间分辨极限. 本文围绕半导体中光学探针光的全光调制效应, 提出一种以低温GaAs材料为基础, 实现皮秒时间分辨X-ray探测的新方法, 详细阐述了该探测器的工作机理、器件参数设计和时间分辨能力. 通过飞秒激光打靶实验, 验证了其概念设计的正确性. 结果表明该探测器具有约1.5 ps时间响应和10 ps时间分辨能力, 通过材料优化可将时间分辨提升 至1 ps以内.
    Diagnostic measurement of single picosecond event in high energy density physics, laser fusion, plasma radiation, and combustion, is of great importance. However, the measuring of the shape of the single X-ray pulse and the synchronization of X-ray and the laser pulse in picosecond resolution is still a great challenge. Restricted by the transit time of electrons, the time-resolution limit of a conventional framing camera based on the microchannel plate is 40 ps. Centered on the full-optical modulation effect of the light-probe, a novel method for X-ray detection of picoseconds temporal resolution based on low temperature GaAs is proposed in this work. The basic physical mechanism of the detector can be explained in both macroscopical and microcosmic ways. In the macroscopical way, the X-ray radiation absorption in the sensor material produces a transient, non-equilibrium electron-hole pair distribution that results in a transient differential change of the local refractive index, which is then sensed by the reflectivity changes of the optical probe beam. In the microcosmic way, X-ray absorption creates photoelectrons and the core level holes are subsequently filled through Auger or fluorescence processes. These excitations ultimately increase conduction and valence band carriers that perturb optical reflectivity.#br#To verify the proposed X-ray detection method, a Fabry-Perot detector is designed, which consists of a 5 μm thick GaAs layer surrounded by a GaAs/AlAs distributed Bragg reflector. The test is carried out on a femtosecond laser facility, where the X-ray source is produced by focusing the 56 fs Ti: Sapphire facility laser, with a central wavelength of 800 nm, onto an aluminum foil. Then the X-ray pulse induces a transient optical reflectivity change in GaAs, which is a powerful tool for establishing the high-speed X-ray detection.#br#The experimental results indicate that this technology can be used to provide X-ray detectors with a temporal resolution of tens of picoseconds. By optimizing the material, the temporal resolution can be enhanced to be less than 1 ps. Through further development, this X-ray detector could provide an insight into previously unmeasurable phenomena in many fields. Future work will focus on developing much faster devices characterizing both the rise and fall time and imaging array technology.
    • 基金项目: 国家自然科学基金(批准号: 11305259, 11327303)和财政部重大科研装备仪器项目资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11305259, 11327303) and the Ministry of Finance Major Research Equipment Project, China.
    [1]

    Hu X, Jiang S E, Cui Y L Huang Y X, Ding Y K, Liu Z L, Yi R Q, Li C G, Zhang J H, Zhang H Q 2007 Acta Phys. Sin. 56 1447 (in Chinese) [胡昕, 江少恩, 崔延莉, 黄翼翔, 丁永坤, 刘忠礼, 易荣清, 李朝光, 张景和, 张华全 2007 56 1447]

    [2]

    Wang R R, Jia G, Fang Z H, Wang W, Meng X F, Xie Z Y, Zhang F 2014 Chin. Phys. B 23 113201

    [3]

    Pawley C J, Deniz A V 2000 Rev. Sci. Instrum. 71 1286

    [4]

    Schneider M B, Holder J P, James D L, Bruns H C, Celeste J R, Compton J 2006 Rev. Sci. Instrum. 77 321

    [5]

    Goda K, Tsia K K, Jalali B 2009 Nature 458 1145

    [6]

    Chris H S, John E H 2010 Opt. Lett. 35 1389

    [7]

    Baker K L, Stewart R E, Steele P T, Vernon S P, Hsing W W 2012 Appl. Phys. Lett. 101 031107

    [8]

    Baker K L, Stewart R E, Steele P T, Vernon S P, Hsing W W, Remington B A 2013 Appl. Phys. Lett. 103 151111

    [9]

    Durbin S M, Clevenger T, Graber T, Henning R 2012 Nature Photon. 6 111

    [10]

    Gibbs H M 1995 Optical Bistability: Controlling Light with Light (Orlando: Academic Press) pp135-137

    [11]

    Ziaja B, London R A, Hajdu J 2006 J. Appl. Phys. 99 033514

    [12]

    Liang L L, Tian J S, Wang T, Li F L, Gao G L, Wang J F, Wang C, Lu Y, Xu X Y, Cao X B, Wen W L, Xin L W, Liu H L, Wang X 2014 Acta Phys. Sin. 63 060702 (in Chinese) [梁玲亮, 田进寿, 汪韬, 李福利, 高贵龙, 王俊锋, 王超, 卢裕, 徐向晏, 曹希斌, 温文龙, 辛丽伟, 刘虎林, 王兴 2014 63 060702]

  • [1]

    Hu X, Jiang S E, Cui Y L Huang Y X, Ding Y K, Liu Z L, Yi R Q, Li C G, Zhang J H, Zhang H Q 2007 Acta Phys. Sin. 56 1447 (in Chinese) [胡昕, 江少恩, 崔延莉, 黄翼翔, 丁永坤, 刘忠礼, 易荣清, 李朝光, 张景和, 张华全 2007 56 1447]

    [2]

    Wang R R, Jia G, Fang Z H, Wang W, Meng X F, Xie Z Y, Zhang F 2014 Chin. Phys. B 23 113201

    [3]

    Pawley C J, Deniz A V 2000 Rev. Sci. Instrum. 71 1286

    [4]

    Schneider M B, Holder J P, James D L, Bruns H C, Celeste J R, Compton J 2006 Rev. Sci. Instrum. 77 321

    [5]

    Goda K, Tsia K K, Jalali B 2009 Nature 458 1145

    [6]

    Chris H S, John E H 2010 Opt. Lett. 35 1389

    [7]

    Baker K L, Stewart R E, Steele P T, Vernon S P, Hsing W W 2012 Appl. Phys. Lett. 101 031107

    [8]

    Baker K L, Stewart R E, Steele P T, Vernon S P, Hsing W W, Remington B A 2013 Appl. Phys. Lett. 103 151111

    [9]

    Durbin S M, Clevenger T, Graber T, Henning R 2012 Nature Photon. 6 111

    [10]

    Gibbs H M 1995 Optical Bistability: Controlling Light with Light (Orlando: Academic Press) pp135-137

    [11]

    Ziaja B, London R A, Hajdu J 2006 J. Appl. Phys. 99 033514

    [12]

    Liang L L, Tian J S, Wang T, Li F L, Gao G L, Wang J F, Wang C, Lu Y, Xu X Y, Cao X B, Wen W L, Xin L W, Liu H L, Wang X 2014 Acta Phys. Sin. 63 060702 (in Chinese) [梁玲亮, 田进寿, 汪韬, 李福利, 高贵龙, 王俊锋, 王超, 卢裕, 徐向晏, 曹希斌, 温文龙, 辛丽伟, 刘虎林, 王兴 2014 63 060702]

  • [1] 王建海, 钱建强, 窦志鹏, 林锐, 许泽宇, 程鹏, 王丞, 李磊, 李英姿. 基于小波变换的多频静电力显微镜动态过程测量方法.  , 2022, 71(9): 096801. doi: 10.7498/aps.71.20212095
    [2] 李杭, 陈萍, 田进寿, 薛彦华, 王俊锋, 缑永胜, 张敏睿, 何凯, 徐向晏, 赛小锋, 李亚晖, 刘百玉, 王向林, 辛丽伟, 高贵龙, 汪韬, 王兴, 赵卫. 基于太赫兹脉冲加速及扫描电子束的高时间分辨探测器.  , 2022, 71(2): 028501. doi: 10.7498/aps.71.20210871
    [3] 李杭, 陈萍, 田进寿. 基于太赫兹脉冲加速及扫描电子束的高时间分辨探测器研究.  , 2021, (): . doi: 10.7498/aps.70.20210871
    [4] 王义, 张秋楠, 韩冬, 李元景. 多气隙电阻板室飞行时间谱仪技术.  , 2019, 68(10): 102901. doi: 10.7498/aps.68.20182192
    [5] 莫军, 冯国英, 杨莫愁, 廖宇, 周昊, 周寿桓. 基于石墨烯的宽带全光空间调制器.  , 2018, 67(21): 214201. doi: 10.7498/aps.67.20180307
    [6] 杨文斌, 周江宁, 李斌成, 邢廷文. 激光诱导氮气等离子体时间分辨光谱研究及温度和电子密度测量.  , 2017, 66(9): 095201. doi: 10.7498/aps.66.095201
    [7] 范伟, 朱斌, 席涛, 李纲, 卢峰, 吴玉迟, 韩丹, 谷渝秋. 利用啁啾脉冲频谱干涉技术研究高应变率载荷下铜膜的动态响应特性.  , 2016, 65(15): 150602. doi: 10.7498/aps.65.150602
    [8] 林子扬, 万辉, 尹君, 侯国辉, 牛憨笨. 分子环境变化对振动退相时间影响的实验研究.  , 2015, 64(14): 143301. doi: 10.7498/aps.64.143301
    [9] 尹君, 余锋, 侯国辉, 梁闰富, 田宇亮, 林子扬, 牛憨笨. 多色宽带相干反斯托克斯拉曼散射过程的理论与实验研究.  , 2014, 63(7): 073301. doi: 10.7498/aps.63.073301
    [10] 刘玉峰, 丁艳军, 彭志敏, 黄宇, 杜艳君. 激光诱导击穿空气等离子体时间分辨特性的光谱研究.  , 2014, 63(20): 205205. doi: 10.7498/aps.63.205205
    [11] 范伟, 谷渝秋, 朱斌, 税敏, 单连强, 杜赛, 辛建婷, 赵宗清, 周维民, 曹磊峰, 张学如, 王玉晓. 一种超快时间分辨速度干涉仪的设计和理论研究.  , 2014, 63(6): 060703. doi: 10.7498/aps.63.060703
    [12] 吕绮雯, 郑阳恒, 田彩星, 刘福虎, 蔡啸, 方建, 高龙, 葛永帅, 刘颖彪, 孙丽君, 孙希磊, 牛顺利, 王志刚, 谢宇广, 薛镇, 俞伯祥, 章爱武, 胡涛, 吕军光. 利用ICCD定位宇宙线来测量探测器时间分辨的方法研究.  , 2012, 61(7): 072904. doi: 10.7498/aps.61.072904
    [13] 印娟, 雍海林, 吴裕平, 彭承志. 基于高损耗信道的纠缠分发实验模拟.  , 2011, 60(6): 060307. doi: 10.7498/aps.60.060307
    [14] 于凌尧, 尹君, 万辉, 刘星, 屈军乐, 牛憨笨, 林子扬. 基于超连续光谱激发的时间分辨相干反斯托克斯拉曼散射方法与实验研究.  , 2010, 59(8): 5406-5411. doi: 10.7498/aps.59.5406
    [15] 苏兆锋, 杨海亮, 邱爱慈, 孙剑锋, 丛培天, 王亮平, 雷天时, 韩娟娟. 高能脉冲X射线能谱测量.  , 2010, 59(11): 7729-7735. doi: 10.7498/aps.59.7729
    [16] 梁文锡, 朱鹏飞, 王瑄, 聂守华, 张忠超, 曹建明, 盛政明, 张杰. 超快电子衍射系统的时间空间分辨能力研究及其优化.  , 2009, 58(8): 5539-5545. doi: 10.7498/aps.58.5539
    [17] 吴文智, 闫玉禧, 郑植仁, 金钦汉, 刘伟龙, 张建平, 杨延强, 苏文辉. 水溶性CdTe量子点的稳态和纳秒时间分辨光致发光光谱.  , 2007, 56(5): 2926-2930. doi: 10.7498/aps.56.2926
    [18] 刘运全, 梁文锡, 张 杰, 吴建军, 田进寿, 王俊峰, 赵宝升. 飞秒电子衍射系统的静态特性研究.  , 2006, 55(12): 6500-6505. doi: 10.7498/aps.55.6500
    [19] 刘运全, 张 杰, 梁文锡, 王兆华. 飞秒掺钛蓝宝石激光三倍频理论和实验研究.  , 2005, 54(4): 1593-1598. doi: 10.7498/aps.54.1593
    [20] 朱建敏, 沈文忠. 步进扫描时间分辨光谱及其在太阳电池光电导上的应用.  , 2004, 53(11): 3716-3723. doi: 10.7498/aps.53.3716
计量
  • 文章访问数:  6320
  • PDF下载量:  184
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-04-23
  • 修回日期:  2015-06-12
  • 刊出日期:  2015-10-05

/

返回文章
返回
Baidu
map